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• Interpretability  limits  of  functional  connectivity  measures  identified  with  modeling.
• Most  connectivity  measures  can  change  with  no brain  region  interaction  change.
• Decomposition  of  correlation  reveals  covariance  as  an  important  check  on results.
• Empirical  tests  demonstrate  that  covariance  and  correlation  often  differ  in practice.
• Even  when  results  are  identical  between  methods  covariance  provides  an  important  check.
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a  b  s  t  r  a  c  t

Background:  An  increasing  number  of  neuroscientific  studies  gain  insights  by focusing  on  differences  in
functional  connectivity—between  groups,  individuals,  temporal  windows,  or task  conditions.  We  found
using  simulations  that  additional  insights  into  such  differences  can  be  gained  by  forgoing  variance  nor-
malization,  a procedure  used  by most  functional  connectivity  measures.  Simulations  indicated  that  these
functional  connectivity  measures  are sensitive  to  increases  in independent  fluctuations  (unshared  signal)
in  time  series,  consistently  reducing  functional  connectivity  estimates  (e.g.,  correlations)  even  though
such  changes  are  unrelated  to corresponding  fluctuations  (shared  signal)  between  those  time  series.
This is  inconsistent  with  the  common  notion  of  functional  connectivity  as the  amount  of  inter-region
interaction.
New  method:  Simulations  revealed  that  a version  of  correlation  without  variance  normalization  –  covari-
ance  – was  able  to isolate  differences  in shared  signal,  increasing  interpretability  of  observed  functional
connectivity  change.  Simulations  also revealed  cases  problematic  for  non-normalized  methods,  leading
to a “covariance  conjunction”  method  combining  the  benefits  of  both  normalized  and  non-normalized
approaches.
Results:  We  found  that  covariance  and  covariance  conjunction  methods  can  detect  functional  connectivity
changes  across  a variety  of  tasks  and  rest  in both  clinical  and  non-clinical  functional  MRI  datasets.
Comparison  with  existing  method(s):  We  verified  using  a  variety  of tasks  and  rest  in  both  clinical  and  non-
clinical  functional  MRI datasets  that  it matters  in  practice  whether  correlation,  covariance,  or  covariance
conjunction  methods  are  used.
Conclusions:  These  results  demonstrate  the  practical  and  theoretical  utility  of  isolating  changes  in shared
signal,  improving  the ability  to  interpret  observed  functional  connectivity  change.

©  2015  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

Extensive neuroscientific research has identified consistent pat-
terns of brain activity associated with a variety of behavioral
processes. In trying to understand the systems-level mechanisms
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underlying these activation patterns, researchers have increas-
ingly relied on functional connectivity—the statistical dependence
among brain activity time series. Functional connectivity has been
used across a wide variety of systems and a wide variety of
neuroscientific approaches, such as functional MRI  (fMRI), elec-
troencephalography (EEG), and multi-unit recording (Nolte et al.,
2004; Smith et al., 2011b; Buschman et al., 2012). Much of this
research has focused on identifying the basic systems-level archi-
tecture of the brain via the detection of functional connections
during resting state (Biswal et al., 2010; Brookes et al., 2011; Power
et al., 2011; Yeo et al., 2011; Craddock et al., 2013). In order to
link functional connectivity to cognition and behavior, however,
researchers are increasingly focusing on functional connectivity
differences. Such differences can be between groups (e.g., patients
versus healthy controls), individuals (e.g., correlating with IQ),
temporal windows (i.e., functional connectivity dynamics), or task
conditions. We  focus here on measuring and interpreting such func-
tional connectivity differences.

Despite the common statistical definition of functional connec-
tivity stated above, functional connectivity results are typically
interpreted in terms of neural interactions. This is likely due to
the distinction between what is of underlying theoretical interest
– true neural interactions – and methodological reality. Therefore,
we suggest that one can make progress here by reducing the gap
between methods and the phenomena of theoretical interest. In
other words, we suggest that any functional connectivity measure
that more closely reflects true neural interactions is a better func-
tional connectivity measure.

Here we developed a simulation framework to systematically
characterize relationships between functional connectivity meas-
ures and ground truth interactions. We  designed the framework (1)
to involve signals (neurons/regions) influencing one another, and
(2) to be as simple as possible to facilitate interpretation and to
make as few assumptions about the true nature of brain region
interactions as possible. Briefly, the framework involves simply
summing Gaussian random time series consisting of shared signal
(time series copied between source and target), unshared signal
(time series that are not copied between source and target), and
noise. The simulations allowed us to identify measures that bet-
ter reflect neural interactions, highlighting the appropriateness of
some functional connectivity measures over others when neural
interaction changes are of primary interest.

The most common statistical measures used to estimate
functional connectivity across a wide variety of neuroscientific
approaches are Pearson correlation and related methods (e.g.,
coherence, partial correlation). These and many other common
statistical measures utilize the concept of “percent variance
explained” – dividing an estimate of shared variance by overall
variance (i.e., variance normalization) – to produce standardized
estimates of association. While these measures are frequently use-
ful in other contexts, it was recently suggested that they are
inappropriate for estimating functional connectivity differences
(Friston, 2011)1. If true, this would have major implications for the
study of brain network function, as an increasing number of stud-
ies use Pearson correlation and related measures when studying
functional connectivity differences across groups, individuals, or
conditions (Zalesky et al., 2012a, 2012b).

As an illustration of a limitation of Pearson correlation, it has
been shown that increased noise in neuronal recordings decreases
correlations between neuronal time series, even when the

1 Friston emphasized the inadequacy of Pearson correlations in terms of estimat-
ing indirect influences, undirected influences, and their tendency for changing due
to  changes in noise. We focus here on the last criticism, and touch upon the other
criticisms in Section 4.

underlying neuronal interactions are unchanged (Behseta et al.,
2009). The sensitivity of correlations to unshared signal (rather than
noise per se) may  be especially problematic, however, as this would
reduce the interpretability of any detected functional connectivity
difference. For instance, a significant change in inter-region cor-
relation could be driven solely by increased neural processing by
only one of the two  tested brain regions. Thus, we  use the term
“unshared signal” to emphasize that these effects could be driven by
functionally important neural processes. The same conclusions also
apply to the more general concept of “unshared variance”, which
encompasses both signal and noise.

We  used simulations to ground our systematic exploration of
shared and unshared signal changes. These simulations revealed a
functional connectivity method (covariance) immune to system-
atic bias from unshared signal. However, simulations also revealed
that this method is sensitive to possible increases in overall vari-
ance/power that may  be unrelated to true brain interaction change.
We therefore developed a conjunctive method, in which a func-
tional connectivity change is only considered significant if it is
detected using both a variance normalized measure (e.g., corre-
lation) and covariance. We  then applied this method to empirical
data, determining that it not only provides increased interpretabil-
ity of results but also often provides results distinct from current
methods in practice. These findings validate a new theoretical
and methodological framework for characterizing functional con-
nectivity differences, improving interpretability of brain network
dynamics.

Due to the complex and potentially counterintuitive nature
of the results, we encourage readers to run the simple sim-
ulations themselves, available here: https://github.com/ColeLab/
simplesims/. Seeing and running the code may facilitate develop-
ment of an improved intuition for the nature of these functional
connectivity measures. Modifications of the code, including testing
of other functional connectivity measures and different conditions,
are encouraged as well.

2. Materials and methods

2.1. Functional connectivity estimation

Estimates of time series association were calculated using either
MATLAB (version R2012a) or R (version 2.15.1). Covariance was the
simplest measure we  used, and was calculated as

cov = XY =
n∑

i=1

(
Xi − X̄

)  (
Yi − Ȳ

)

n − 1

where X and Y are brain activity time series, n is the number of time
points, and X̄ and Ȳ are the time series means.

Pearson correlation was  calculated as

r = covXY
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)
√

∑n
i=1

(
Xi − X̄

)2
√∑n
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(
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where S is the time series standard deviation. Most analyses
also involved the Fisher’s z-transform of the resulting Pearson
correlation, which increases the dynamic range of correlation
values beyond ±1.0. This is critical when investigating changes
in functional connectivity, as forgoing the Fisher’s z-transform
would result in artificial restrictions in dynamics. The Fisher’s
z-transform:

Fz = a tan h (r)
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Psycho-physiological interaction (PPI) was estimated using sim-
ple linear regression, which was calculated using the lm function
in R, equivalent to

 ̌ = covXY

varX
=

∑n
i=1

(
Xi − X̄

)  (
Yi − Ȳ

)

∑n
i=1

(
Xi − X̄

)2

where var is the time series variance. The beta for each condi-
tion was estimated separately for each condition and subtracted,
consistent with generalized PPI (McLaren et al., 2012). The addi-
tional step of including task regressors in the regression model
was not included here because we did not simulate mean task
activity amplitude changes (such that they were already effectively
removed from the simulated time series).

Partial correlation was  computed as the inverse covariance
matrix (i.e., the inverse variance–covariance matrix). This is a
standard procedure, which computes the correlations between
pairs of time series after the variances from all other time series
have been linearly removed. This procedure also normalizes the
resulting statistic by the tested time series’ variance (the diagonal
in the variance–covariance matrix), thus implementing variance-
based normalization like standard Pearson correlation.

2.2. Basic simulations

Simulations were conducted using R (version 2.15.1) (R
Development Core Team, 2009). Two brain region time series
(X and Y) were simulated as linear mixtures of shared signal
(sharedXY; identical across regions), unshared signal (unsharedX
and unsharedy), and unshared noise (noiseX and noisey):

X = sharedXY + unsharedX + noiseX

Y = sharedXY + unsharedY + noiseY

Data for each variable were created using the function rnorm,
which produced 200 normally distributed time points. The original
amplitudes were modified only in the case of the noise variables,
which were multiplied by 0.25 such that noise accounted for pro-
portionally less of the variance than the signal variables. This was
repeated 25 times, producing 25 distinct time series per simulated
region.

Manipulations of shared and unshared signals consisted of scal-
ing the relevant component (i.e., multiplying each time point by a
constant) prior to mixing with the other component to produce the
relevant time series. For instance, when increasing shared variance
in both regions, these formulas apply:

X1 = (2  × sharedXY ) + unsharedX + noiseX

Y1 = (2  × sharedXY ) + unsharedY + noiseY

Functional connectivity estimates were then applied to the
manipulated time series, and compared to the estimates from
the original time series. Statistical significance was assessed using
t-tests (two-tailed, independent samples) on the functional con-
nectivity estimates across simulated subjects. R and MATLAB code
implementing these simulations can be found at: https://github.
com/ColeLab/simplesims/.

2.2.1. Phase locked value simulations
We carried out a standard PLV analysis using publically avail-

able software (available at the time of publication at: https://
praneethnamburi.wordpress.com/2011/08/10/plv/). The software
implements the standard PLV algorithm (Lachaux et al., 1999). The
simulation data were generated in the same manner as for the

other simulations, except that each simulated subject contributed
50 trials. This was necessary for the software, which required
multiple trials to estimate PLV. Each trial consisted of 200 time
points, and PLV was implemented as though they were collected
at a 100 Hz sampling rate, with a filter order of 50 and frequency
range of 10–20 Hz. The first 25 PLV time point estimates were dis-
carded to exclude the initial transient (a common artifact of the PLV
approach) and the remaining values were averaged for each trial.
Note that the final z-normalization step often recommended for
PLV was  not applied, since this would more clearly necessitate that
PLV results would look similar to Pearson correlation and related
measures (due to dividing by the standard deviation of the time
series, like Pearson correlation).

2.3. Biophysical computational model simulations

In addition to the simpler conceptual simulation we  used a
well-validated computational model of resting-state functional
connectivity (Deco et al., 2013), extending a local circuit model
(Wong and Wang, 2006), to incorporate biologically plausible
mechanisms for multiple interacting brain regions, with their activ-
ity translated to BOLD signal fluctuations. We recently applied this
model to investigate specific synaptic parameters in relation to clin-
ical effects. Here we  explicitly studied the effects of shared versus
unshared signal alterations in the simulated network. The network
is composed of 66 nodes and is a dynamic mean-field model (Wong
and Wang, 2006), coupled through a large-scale anatomical con-
nectivity matrix, which was derived from diffusion tractography in
humans as reported in Hagmann et al. (2008). For our simulations,
we extracted the anatomical connectivity matrix from Fig. 1 of Deco
and Jirsa (2012), described in detail in our prior work (Yang et al.,
2014). BOLD signals were simulated via the Balloon–Windkessel
model, as done previously (Deco et al., 2013). All model parame-
ter values were set to those used in our prior work (Yang et al.,
2014). Specifically, default values were set to w = 0.531, G = 1.25,
and sigma = 0.0004 (amplitude of unshared noise or signal), with
remaining values set to those of Deco et al.

Next, we  introduced a common input to all nodes—that is
“shared” signal (amplitude = 0.0005). The amplitude of unshared
signal specific to each node was  represented by sigma. We  paramet-
rically varied both shared and unshared signal parameters across
the entire network. Finally, to compute a measure of model-derived
connectivity we used a measure of connectivity across the entire
network termed global brain connectivity (GBC) (Cole et al., 2010).
To compute the GBC of each node, we  first generated a correla-
tion matrix of each node’s signal with signals from all other (65)
nodes. Values in the correlation matrix were then converted using
a Fisher’s r-to-z transform. Next, for each node, GBC was computed
as the mean value of each of the 65 columns (corresponding to
the other 65 nodes) in this transformed matrix. To compute the
average GBC of the network, we  took the mean GBC value across
the 66 nodes. This effectively yielded a GBC index of the model
across parameters. We  also repeated the same calculation using
covariance (rather than correlation) prior to calculating GBC, to
examine the functional connectivity of the model as derived using
covariance instead of correlation.

2.4. 7-Task fMRI data collection

The 7-task fMRI dataset was collected as part of the Washing-
ton University-Minnesota Consortium Human Connectome Project
(Van Essen et al., 2013). Participants were recruited from Wash-
ington University (St. Louis, MO)  and the surrounding area. All
participants gave informed consent. The data used were from the
first and second quarter releases, consisting of data from 139 par-
ticipants. Data from 21 subjects were not used because one or
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more of the data runs was not collected for these subjects, such
that data from 118 subjects were included in the final analy-
ses. Whole-brain echo-planar imaging acquisitions were acquired
with a 32 channel head coil on a modified 3 T Siemens Skyra
with TR = 720 ms,  TE = 33.1 ms,  flip angle = 52◦, BW = 2290 Hz/Px, in-
plane FOV = 208 × 180 mm,  72 slices, 2.0 mm isotropic voxels, with
a multi-band acceleration factor of 8 (Ugurbil et al., 2013). Data
were collected over two days. On each day 28 min  of rest (eyes open
with fixation) fMRI data across two runs were collected (56 min
total), followed by 30 min  of task fMRI data collection (60 min  total).
Each of the 7 tasks was completed over two consecutive fMRI runs.
Resting-state data collection details for this dataset can be found
elsewhere (Smith et al., 2013), as can task data details (Barch et al.,
2013).

2.5. 7-Task fMRI dataset analysis

The 7-task dataset preprocessing consisted of standard func-
tional connectivity preprocessing (typically performed with
resting-state data), with several modifications given that anal-
yses were also performed on task-state data. Resting-state and
task-state data were preprocessed identically in order to facilitate
comparisons between them. Spatial normalization to a template,
motion correction, intensity normalization (normalized to a 4D
whole brain mean of 10,000) were already implemented in a
minimally processed version of the 7-task dataset described else-
where (Glasser et al., 2013), so we began preprocessing with this
version of the data. With the volume (rather than the surface)
version of the minimally preprocessed data, we used AFNI (Cox,
1996) to additionally remove nuisance time series (motion, ven-
tricle, whole brain, and white matter signals, along with their
derivatives) using linear regression, remove the linear trend for
each run, and spatially smooth the data (4 mm full width at half
maximum). Note that whole brain (global) signal regression was
included to reduce potential motion and other artifacts (Power
et al., 2014). Unlike standard resting-state functional connectiv-
ity preprocessing a low-pass temporal filter was  not applied.
This was done due to the possible presence of task signals at
higher frequencies than the relatively slow resting-state fluctu-
ations. In order to make this dataset comparable to most other
current fMRI datasets, however, the data were temporally down-
sampled (as the last step of preprocessing) by averaging data from
every three consecutive volumes (making a 2160 ms  TR, close
to the 2000 ms  TR in most ‘legacy’ single-band fMRI datasets).
This had an effect similar to a mild low-pass temporal filter on
the data (removing frequencies above 0.46 Hz). We  found that
effects were similar with and without this down-sampling step,
however.

Data were sampled from a set of 264 brain regions (rather than
individual voxels) in order to make inferences at the region and
systems level. We  used an independently identified set of puta-
tive functional brain regions (Power et al., 2011) so as to reduce
any potential circularity in analyses (Kriegeskorte et al., 2009). This
particular set of regions was also used rather than anatomically
defined sets of regions in order to reduce the chance of combining
signal from multiple functional regions (Wig  et al., 2011). These
brain regions were identified using a combination of resting-state
functional connectivity parcellation (Cohen et al., 2008) and task
neuroimaging meta-analysis (Power et al., 2011). Data were sum-
marized for each region by averaging signal in all voxels falling
inside each region.

Preprocessing was carried out using Freesurfer, AFNI (Cox,
1996), and custom code in MATLAB 2012b (Mathworks) for the 7-
task dataset (using the minimally preprocessed version of the data,
Glasser et al., 2013). Further analysis was carried out with MATLAB
and R.

We estimated functional connectivity using Pearson correla-
tions and covariances between time series from all pairs of brain
regions using MATLAB (version R2012a). For Pearson correlations,
all computations used Fisher’s z-transformed values. Functional
connectivity estimation was straightforward for resting-state data,
as there were no additional steps after preprocessing prior to cal-
culating these values.

For task data, we  sought to suppress or remove influences
of (across-trial mean) task-related activations on task-related
changes in functional connectivity. Therefore, we ran a standard
fMRI general linear model analysis, and calculated functional con-
nectivity based on the residuals. Specifically, each region’s task time
series was modeled using a standard general linear model with
one regression coefficient per task. To improve removal of task-
related activation variance, a separate regressor was included for
each major 7-task dataset condition (e.g., face stimuli versus tool
stimuli in the N-back task; 24 regressors total). Note that regressing
out task events using general linear modeling primarily removes
the across-trial signal means, retaining trial-to-trial and sub-trial
fluctuations in time series such that these sources of variability
likely contribute the most to task FC estimates (Truccolo et al., 2002;
Rissman et al., 2004). The residuals from this regression model
were used for FC estimation, restricted to time points correspond-
ing to the current task (including a standard hemodynamic lag).
Note that results were similar with and without task activation
regression.

Functional connectivity differences were assessed using two-
way t-tests paired by subject. Multiple comparisons were corrected
for using false discovery rate (Genovese et al., 2002).

2.6. Schizophrenia fMRI dataset analysis

To test the clinical relevance of shared signal analyses, we exam-
ined functional connectivity in a large sample of patients diagnosed
with chronic schizophrenia (SCZ). Specifically, we studied 71 SCZ
patients and 74 demographically matched HCS obtained from a
publicly-distributed dataset provided by the Center for Biomedical
Research Excellence (COBRE) (http://fcon 1000.projects.nitrc.org/
indi/retro/cobre.html). All the processing and analyses procedures
followed our recently published work (Yang et al., 2014). Briefly,
SCZ patients were excluded if they had: (i) history of neurological
disorder, (ii) history of mental retardation, (iii) history of severe
head trauma with more than 5 min  loss of consciousness; (iv) his-
tory of substance abuse or dependence within the last 12 months.
Diagnostic decisions were reached using the SCID interview for
the DSM-IV. SCZ patients (N = 71) and their respective HCS (N = 74)
underwent data collection at Center for Biomedical Research Excel-
lence using a Siemens Tim-Trio 3 T scanner. Full acquisition details
for the SCZ replication sample and HCS is detailed previously
(Mayer et al., 2013). Briefly, BOLD signal was  collected with 32
axial slices parallel to the AC-PC using a T2*-weighted gradient-
echo, echo-planar sequence (TR/TE = 2000/29 ms,  flip angle = 75◦,
acquisition matrix = 64 × 64, voxel size = 3 × 3 × 4 mm). The acqui-
sition lasted 5 min  and produced 150 volumetric images per
subject. Structural images were acquired using a 6 min  T1-
weighted, 3D MPRAGE sequence (TR/TE/TI = 2530/[1.64, 3.5, 5.36,
7.22, 9.08]/900, flip angle = 7◦, voxel size [isotropic] = 1 mm,  image
size = 256 × 256 × 176 voxels), with axial slices parallel to the AC-PC
line. All the described parameters were provided via the publically-
distributed website (http://fcon 1000.projects.nitrc.org/indi/retro/
cobre.html).

The processing of this dataset was completed independently of
the other fMRI dataset in order to test if the specific processing
steps included in the other dataset were necessary for the
reported results (distinct effects with correlation versus covari-
ance). All BOLD data underwent the following processing steps:
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Fig. 1. Differences between correlations and covariances for estimating functional connectivity differences. (A) Diagrams and equations illustrating simulated communication
changes between brain regions (or neurons) X and Y. Left, only the portion of the time series shared across both regions is amplified relative to the unshared and noise
portions. Center, only the unshared portion is amplified. Right, both the shared and unshared portions are amplified. (B) A single subject’s simulated data are shown for
illustration across the three conditions. Results of the group simulation are shown in the upper left of each panel. The correlation (corrdiff) and covariance (covdiff) results are
in  agreement when only shared signal is increased, but not for the other two  cases.

(i) slice-time correction, (ii) first 5 images removed from each run,
(iii) rigid body motion correction, (iv) 12-parameter affine trans-
form of the structural image to the Talairach coordinate system, and
(v) co-registration of volumes to the structural image with
3 × 3 × 3 mm re-sampling, ensuring all BOLD images across both
scanners were interpolated to the same resolution.

In addition, all BOLD images for the clinical analyses had to
pass stringent quality assurance criteria to ensure that all func-
tional data were of comparable and high quality: (i) signal-to-noise
ratios (SNR) > 100, computed by obtaining the mean signal and
standard deviation for a given slice across the BOLD run, while
excluding all non-brain voxels across all frames. Furthermore, all
image frames with possible movement-induced artifactual fluctu-
ations in intensity were identified via two criteria: First, frames
in which sum of the displacement across all 6 rigid body move-
ment correction parameters exceeded 0.5 mm (assuming 50 mm
cortical sphere radius) were identified; Second, root mean square
(RMS) of differences in intensity between the current and preced-
ing frame was computed across all voxels divided by mean intensity
and normalized to time series median. Frames in which normalized
RMS  exceeded the value of 3 were identified. The frames flagged
by either criterion were marked for exclusion (logical or), as well
as the one preceding and two frames following the flagged frame.
Collectively, these quality assurances add confidence that typical
neuroimaging confounds (i.e., SNR or movement) are not driving
present effect. Lastly, to remove spurious signal in resting-state
data we completed additional preprocessing steps, as is standard
practice (Cordes et al., 2001): all BOLD time-series underwent high
(>0.009 Hz) and low (<0.08 Hz) pass temporal filtering, removal
of nuisance signal extracted from anatomically-defined ventricles,
white matter, and the remaining brain voxels (i.e., global sig-
nal) (all identified via individual-specific FreeSurfer segmentations,
Desikan et al., 2006), as well as 6 rigid-body motion correction
parameters, and their first derivatives using in-house MATLAB
tools.

3. Results

3.1. Simulating neural interactions with minimal assumptions

We  conducted a series of simulations that modeled changes in
brain region interactions. We  designed these simulations to be as
simple as possible so as to make as few assumptions about the
true nature of brain region interactions as possible. Each brain
region was modeled as a mixture of shared signal (sharedXY; iden-
tical across regions), unshared signal (unsharedX; distinct across
regions), and unshared noise (noiseX; also distinct across regions).
Each region’s time series was composed of 200 time points, with
equal parts of shared and unshared signals and one-quarter part
noise (see Section 2 for details). Changes in brain region activ-
ity consisted of differential scaling of each of these components
(e.g., multiplying the shared signal by 2) (Fig. 1A). Each simulation
was run 25 times, each with two  conditions. These simulations
could be considered as simulating 25 subjects during two brain
states each (e.g., a cognitive manipulation, or spontaneous changes
across time), or differences between two  groups of 25 subjects
(e.g., patients versus healthy controls, during a resting-state exper-
iment). Note that we focus primarily on brain region interactions
but conclusions are likely identical for interactions between indi-
vidual neurons as well as other forms of brain interaction, though
(as we  address with the spectral covariance approach) in many sce-
narios it will be necessary to account for temporal lag between time
series.

There are multiple possible underlying physiological changes
that could result in the simulated functional connectivity changes
(i.e., changes in coupling). For instance, the simulated increases
in shared variance could result from increased synaptic strengths
(e.g., due to short-term or long-term plasticity, Zucker and Regehr,
2002; Yao et al., 2007) or increased synchrony due to entrain-
ment of neural populations to the same oscillations (Fries, 2005).
One mechanism for this type of change could be mediated via
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pre-synaptic glutamate release along with an action potential from
the presynaptic neuron activating the N-methyl-d-aspartate glu-
tamate receptor (NMDAR) (Krystal et al., 2003). Alternatively, a
change in coupling may  reflect elevated dopamine tone in the
same cortical circuit (Vijayraghavan et al., 2007). Importantly, we
remain agnostic with regard to these types of assumptions in our
simple model, allowing generalizability of our conclusions across
a spectrum of biological mechanisms. In contrast to shared vari-
ance, the simulated increases in unshared variance could result
from increased neural activity unrelated to shared signals commu-
nicated to/from the regions of interest. For instance, there could
be increased processing in one of the two tested regions, or more
interaction between one of the tested regions and another unre-
lated region (e.g., increased communication between regions Y and
another region Z, rather than between X and Y; Fig. 2A. There are
likely other scenarios involving changes in shared and/or unshared
signals not mentioned here that these simulations nonetheless
account for.

We  compared covariances (cov) and Fisher’s z-transformed
Pearson correlations (corr) before and after manipulating the
amount of shared and/or unshared signals. Note that we applied
the Fisher’s z-transform so changes among high correlations were
not restricted as they approached ±1.0, but conclusions were
the same without this transform. We  found that both correla-
tions (mean corrdiff = +0.52, t(24) = 28, p < 0.00001) and covariances
(mean covdiff = +2.9, t(24) = 30, p < 0.00001) increased when the
shared signal was increased (Fig. 1, left side), consistent with the
mathematical formulation described below. This reflected a larger
effect of region X’s activity on Y’s activity, and vice versa (a 2×
increase in each direction). This result is consistent with common

notions of functional connectivity differences as a change in the
amount of inter-region communication.

We next sought to simulate circumstances in which correlation
and covariance would differ. We  found that an increase in unshared
signal significantly decreased correlations (mean corrdiff = −0.33,
t(24) = −15, p < 0.00001), while covariances (mean covdiff = +0.01,
t(24) = 0.1, p = 0.9) were unchanged (Fig. 1, center). Critically, only
covariance tracked the shared variance (which was left unchanged),
whereas correlation was  decreased by amplification of signal unas-
sociated with inter-region communication.

Simulations also demonstrated that the results differed when
both shared and unshared signals were increased (Fig. 1, right side).
With this manipulation correlation changes could be significantly
positive, negative, or show no difference, depending on the amount
of unshared signal change. We  focused on the simple case in which
there was a 2× increase in both shared and unshared signals: There
was no difference between correlations (mean corrdiff = −0.01,
t(24) = −0.4, p = 0.7), but there was  a difference between covarian-
ces (mean covdiff = +2.8, t(24) = 29, p < 0.00001).

Again, only covariance tracked changes in the shared signal, con-
sistent with increased influence of the regions’ activities on each
other. However, the correlation result could be considered correct if
there was some confound affecting both shared and unshared vari-
ances in a similar manner. For example, there could be an increase
in overall variance/power that would result in apparent increases
in shared signal along with unshared signal. In the absence of
a confound, however, the simulated scenario seems quite plau-
sible, as increased inter-region communication could result in
increased shared signal along with increased unshared signal due
to greater within-region computation (e.g., information received in

Fig. 2. Differences between correlations and covariances for estimating functional connectivity differences, due to interaction with a third region.  Interaction between region Y and
Z  can stand in for “unshared signal” (in Fig. 1) when testing for functional connectivity differences for regions Y and X. (A) Diagrams and equations illustrating simulated
communication changes between brain regions (or neurons) X, Y, and Z. Left, only the portion of the time series shared between regions X and Y is amplified in region Y.
Center,  only the portion shared between regions Z and Y is amplified in region Y. Right, the XY shared and ZY shared portions are both amplified in region Y. (B) A single
subject’s  simulated data are shown for illustration across the three conditions. Results of the group simulation are shown in the upper left of each panel. The correlation
(corrdiff) and covariance (covdiff) results are in agreement when only XY shared signal is increased, but not for the other two cases. This suggests correlation-like measures
are  sensitive to a wider variety of interactions irrelevant to the interactions between the two regions being tested.
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Fig. 3. A flowchart illustrating a “covariance conjunction” approach to interpreting functional connectivity differences. A similar line of reasoning would also work for most
functional connectivity measures (not just correlation; e.g., PPI). Note that simply using covariance would result in a simpler line of reasoning: a significant covariance
difference signifies a shared variance difference. However, as noted, a potential confound related to a change in overall variance could invalidate a result significant for
covariance only. We suggest that the most conservative approach involves conducting both covariance and correlation analyses, assigning the most confidence to results
that  are consistent across both approaches (the upper-most route in the flowchart).

a region that needs to be processed but is unshared with the other
region).

Taken together, these simple simulations suggest that covari-
ance differences are associated with shared signal differences,
reflecting true inter-region communication differences (in the
absence of confounds). Given that overall variance/power con-
founds are possible with all neuroscientific methods, the
conservative approach would be to use both correlation and covari-
ance in conjunction: those changes in functional connectivity
detected using both correlation and covariance are more likely to
be true changes in functional connectivity.

We  constructed a flowchart to illustrate this logic (Fig. 3). Sim-
ulation results of all possible combinations of shared and unshared
variance changes are reported in Fig. 4. We  also found that interac-
tions with a third region Z can produce similar effects as a change
in unshared signal when investigating regions X and Y (Fig. 2),

suggesting correlation-like measures are also sensitive to a wider
variety of interactions irrelevant to the interactions between the
two regions being tested. This was not the case for partial correla-
tions, due to linear removal of the third region’s variance. However,
like Pearson correlations, partial correlations normalize by over-
all variance such that results were virtually identical to Pearson
correlation in the simulations reported in Fig. 1. This suggests par-
tial correlations retain many of the limitations of standard Pearson
correlations.

3.2. Mathematical formulation

We  next examined a simple mathematical formulation to ver-
ify and illustrate the problem that arises when assessing changes
in functional connectivity based on the measure of correlation. We
consider two  time series, X and Y, which could be physiological

Fig. 4. All possible shared and unshared variance change combinations. (A) The full parameter space is shown for changes in shared and unshared variance relative to a central
point  (in white). The correlation and covariance values were calculated using the simple mathematical formulation described in Section 3.2 (not the simulations, though
note  the similarity to results with the realistic neural simulations presented in Fig. 5). The boxed numbers refer to the combinations listed in part B. (B) Group simulation
results  (using the same methods as Fig. 1) are shown across all possible manipulations of shared variance and unshared variance (p < 0.05). Fig. 1 illustrates cases 2, 4, and
1.  Note that correlation and covariance give different answers in 4 out of the 8 cases, and that covariance matches shared variance changes in all cases. The suggested
covariance conjunction approach results are highlighted in green. A variety of other common functional connectivity measures are also included to illustrate how general
these  results are. Code for these simulations can be found at: https://github.com/ColeLab/simplesims/ + increase, 0 no change, − decrease, cov = covariance, scov = spectral
covariance, corr = Pearson correlation, coh = coherence, MI  = mutual information, reg = regression, PPI = psycho-physiological interaction, spcorr = Spearman correlation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)

https://github.com/ColeLab/simplesims/
https://github.com/ColeLab/simplesims/
https://github.com/ColeLab/simplesims/
https://github.com/ColeLab/simplesims/
https://github.com/ColeLab/simplesims/
https://github.com/ColeLab/simplesims/
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signals from two brain areas (or neurons). Covariance (cov) pro-
vides a measure of how strongly X and Y change together:
cov(X,Y) = ⟨(X − ⟨X⟩)(Y − ⟨Y⟩)⟩, where ⟨. . .⟩  is the average over time.
Correlation (corr) is a rescaled measure that normalizes covariance
by the variances of X and Y: corr(X,Y) = cov(X,Y)/sqrt(var(X)var(Y)).
This normalization in correlation complicates interpretation of
changes in functional connectivity, because a change in correlation
can reflect a change in covariance or a change in variance.

We framed this problem by considering that changes in
correlation-based estimates of functional connectivity can be
driven by both shared and unshared brain signals. We  considered
the case where X and Y can each be decomposed into two  compo-
nents: a signal that is shared between X and Y with variance !2

S ,
and a signal that is unshared between X and Y with variance !2

U .
Then cov (X, Y) = !2

S , and corr (X, Y) = !2
S /

(
!2

S + !2
U

)
. Thus covari-

ance reflects the shared signal and is not systematically altered
by the unshared signal. In contrast, correlation depends on both
shared and unshared signals due to the normalization step. This
formulation illustrates the difficulty in interpreting changes in con-
nectivity based on correlation rather than covariance. For instance,
a decrease in covariance purely reflects a decrease in shared sig-
nal. In contrast, a decrease in correlation could reflect a decrease in
shared signal or an increase in unshared signals. We  next turn to
a numerical demonstration of this problem with simulated neural
data.

3.3. Other regression-based methods such as
psycho-physiological interaction are similar to correlations

In the original review suggesting correlations may  be problem-
atic when testing for functional connectivity differences, it was
suggested that the psycho-physiological interaction (PPI) method
does not suffer from the hypothesized issues with correlation
(Friston, 2011). PPI is essentially the regression of one time series
on another (with simultaneously fit nuisance variables) (McLaren
et al., 2012), such that changes in which time series is the “source”
and “target” can give different estimates. Mathematically, the
regression beta estimates are equivalent to covariance divided
by the source time series variance (see Section 2). Thus, we pre-
dicted that manipulations to the source time series would appear
similar to correlations, whereas manipulations to the target time
series would appear similar to covariances. Consistent with this,
we found that increasing region X’s unshared signal (the source)
decreased the beta estimate (mean betadiff = −0.29, p < 0.00001),
while increasing region Y’s unshared signal (the target) did not
change the beta estimate (mean betadiff = +0.01, p = 0.7). Thus, PPI
and related regression approaches are similar to correlation with
regard to the source time series, but reflect covariance with regard
to the target time series. When manipulating both time series (as in
Fig. 1), the regression/PPI approach results were the same as cor-
relations. Note that some of the sensitivity to unshared variance
may  be reduced by including task timing estimates as nuisance
regressors (as typically done with PPI, and as done with the empir-
ical analyses below), yet this would only account for across-trial
mean activity such that much of the unshared variance (e.g., of
moment-to-moment and trial-to-trial signals) would remain.

Overall, these results are mostly inconsistent with the previ-
ous claim regarding PPI (Friston, 2011). Specifically, contrary to the
original claim, there can be a change in a PPI estimate even when
shared signal does not change: when unshared signal changes in
both (or just the target) time series. We  found that a variety of
other common functional connectivity measures also showed sim-
ilar results to Pearson correlation, such as coherence—a commonly
used method for investigating functional connectivity using elec-
trophysiological signals (see Section 3.4 and Fig. 4B).

3.4. Preliminary extension of approach to lag-invariant methods

Correlation is the most common functional connectivity
approach with fMRI, likely because its low temporal resolution
results in only minimal lags between time series. In contrast,
methods such as electroencephalography (EEG) and intracranial
recording obtain data at high temporal resolution, resulting in
lagged correspondence between time series (e.g., 10 to 100 ms
delays in inter-region signal propagation). Therefore, one of the
most common functional connectivity measures with these meth-
ods has been coherence, which is robust to lags. This is possible
because coherence measures the correspondence between each
time series’ power across frequencies (i.e., the spectral density dis-
tribution). Importantly, coherence is similar to Pearson correlation
in that it is normalized by overall variance. We  therefore hypoth-
esized that coherence would be sensitive to changes in unshared
signal, just like correlation.

We tested this hypothesis using identical simulations as used
in Fig. 1, but tested using coherence and with a 5 time point lag
between the time series. Confirming our hypothesis, we found
that coherence showed the same pattern of results as correlation
(in contrast to covariance). Specifically, there was  an increase in
coherence when shared signal was  increased (mean cohdiff = 0.40,
t(24) = 49, p < 0.00001), a decrease when unshared signal was
increased (mean cohdiff = −0.07, t(24) = −7, p < 0.00001), and no
change when both shared and unshared signals were increased
(mean cohdiff = 0.007, t(24) = 0.7, p = 0.46). Note that there were no
significant changes detected using correlations or covariance with
the 5 time point lag.

We next developed a new spectral measure based on covari-
ance, which we  hypothesized would be unchanged by temporal
lags or differences in unshared signal. We  call this measure “spec-
tral covariance” (scov). This measure is computed by estimating
the spectral density distribution (i.e., a periodogram) for each time
series, followed by measuring the covariance between these dis-
tributions. Intuitively, this is the same covariance approach used
above, but now on the pattern of power across frequencies rather
than the raw time series. Consistent with our hypothesis, we
found that this measure matched covariance even with a tempo-
ral lag between the time series. Specifically, there was  an increase
in spectral covariance when shared signal was increased (mean
scovdiff = 1.4, t(24) = 28, p < 0.00001), no change when unshared sig-
nal was  increased (mean scovdiff = 0.003, t(24) = 0.03, p = 0.98), and
an increase when both shared and unshared signals were increased
(mean scovdiff = 0.71, t(24) = 5, p = 0.00002). It therefore appears
possible to implement a covariance conjunction approach that is lag
invariant, combining results from coherence and spectral covari-
ance to increase confidence in a detected functional connectivity
change.

We  next tested if this method would work when only a small
subset of frequencies are altered, rather than all frequencies. Spec-
tral covariance was not robust to unshared signal changes in
this case. Specifically, there was  a decrease in spectral covari-
ance when unshared signal was increased in a single frequency
(mean scovdiff = −0.9, t(24) = −10, p < 0.00001). This suggests this
new approach is limited to cases in which broad sets of frequencies
are altered. It will be important for future research to investigate
ways to overcome this limitation in spectral covariance. One pos-
sibility may  be the use of lagged covariance (testing covariance
at various lags between time series), though this could result in
overfitting data due to multiple comparison testing across many
lags. Overall, these results demonstrate a proof of principle for a
way to estimate lag-invariant functional connectivity change that is
robust to changes in unshared signal. More generally, these results
suggest it may  be possible to modify a variety of other functional
connectivity measures to be robust to changes in unshared signal.
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3.5. Extension to phase locked value

Some characterizations of functional connectivity have focused
on phase synchronization of oscillations (Lachaux et al., 1999; Engel
et al., 2001; Aydore et al., 2013). One prominent method for iso-
lating phase synchronization is phase locked value (PLV) (Lachaux
et al., 1999). PLV characterizes time series in terms of oscillations
at a particular frequency range, quantifying how close the phase
is between two time series. Unlike correlation, coherence, and
the other measures, PLV removes fluctuation amplitudes to focus
exclusively on the timing of the fluctuations. One might therefore
assume that PLV would be immune to the changes in signal ampli-
tude implemented by our simulations. We  carried out a standard
PLV analysis using publically available software (see Section 2.2.1)
to test this possibility.

Surprisingly, we found that PLV acted very similarly to Pearson
correlations and related measures. We  found that PLV significantly
increased when shared signal was amplified (mean PLVdiff = +0.29,
t(24) = 64, p < 0.00001), significantly decreased when unshared sig-
nal was amplified (mean PLVdiff = −0.21, t(24) = −42, p < 0.00001),
and showed no significant change when both shared and unshared
signals were increased (mean PLVdiff = 0.01, t(24) = 1.85, p = 0.07).
Note the marginally significant effect for the last simulation, hint-
ing at a possible difference from Pearson correlations and related
measures (but not as initially expected).

It is beyond the scope of the present study to fully charac-
terize why these simulations resulted in PLV changes. However,
one possibility is that PLV can be conceptualized as counting the
number of identified shared fluctuations in two time series, with
added unshared signal reducing the number of identified shared
fluctuations. This may  be due to greater corruption of the per-
fectly in-phase oscillations present in the shared signal by larger
unshared oscillations. In particular, cases in which a shared oscil-
lation would be nearly canceled out by an anti-phasic unshared
oscillation may  be completely canceled out with greater unshared
signal amplitude. This is all despite there actually being true phase
synchronization underlying the signals, given the presence of the
shared signal across both time series. It will be important for
future research to explore this and other possibilities, as well as

developing alternative phase locking estimates that are not sys-
tematically biased by changes in unshared signal.

3.6. Biologically realistic simulations illustrate relationships
between brain network dynamics and functional connectivity
measures

We  next utilized a previously developed biophysically based
computational model (Deco et al., 2013; Yang et al., 2014) to (1) test
if the effects identified above are present in a model that captures
neurobiologically realistic neuronal dynamics in a larger network,
and (2) to explore the effect of many possible brain region activ-
ity changes on functional connectivity measures using plausible
neuronal dynamics. Population spiking activity in 66 nodes was
simulated by a dynamical mean-field model (Wong and Wang,
2006), coupled through structured long-range projections derived
from diffusion-weighted imaging in humans (Hagmann et al.,
2008). Simulated electrophysiological signals were then converted
to simulated fMRI blood-oxygen level dependent (BOLD) signals
using the Balloon–Windkessel hemodynamic model (Friston et al.,
2003) to mimic  empirical BOLD connectivity data presented below.
We quantified effects across the entire simulated network by uti-
lizing a simple graph theoretical measure known as global brain
connectivity (GBC) (Cole et al., 2010). GBC involves averaging of a
given region’s functional connectivity estimates with the rest of the
brain (i.e., connectivity with all other regions). In this case we com-
pared GBC using correlation versus covariance. We examined each
measure in response to systematically manipulating the amount of
unshared and shared signal between all nodes in the model (Fig. 5).

The modeling simulations converged with the simpler concep-
tual illustration: only covariance matched the changes in shared
signal (Fig. 5A, diagonal). Specifically, covariance was unchanged
from the central “baseline” point in Fig. 5A as unshared sig-
nal was  changed (horizontally). However, covariance was  highly
sensitive to changes in shared signal (vertically). In contrast,
correlations interacted with both shared and unshared signals,
remaining unchanged when shared and unshared signals changed
equally (diagonally). However, correlations increased (upper left)
or decreased (lower right) depending on the relative dominance

Fig. 5. Neurobiologically realistic simulations reveal the relationship between network changes and functional connectivity measures. (A) Shared and unshared neural signals were
systematically manipulated across 66 simulated brain regions. The two-dimensional parameter space illustrates the effects of these manipulations for correlations (corr,
squares, far right color bar) and covariances (cov, circles in each square, the adjacent color bar), averaged across all connections for parsimony (i.e., global connectivity across
the  entire set of simulated regions). The color scales indicate increases (red) and decreases (blue) relative to the central point in the parameter space (white, marked with
gray  border). The approximate portion of the parameter space in which both correlation and covariance gave the same results (i.e., the conjunction) is highlighted by green
triangles in the upper left and lower right corners. Note that these large-scale neural network dynamics are nearly isomorphic to the pure mathematical solution (see Fig. 4A),
supporting the theoretical formulation. (B) The same simulations for each variable in one dimension, indicating that simulations of a neurobiologically realistic network are
consistent with the simpler simulations in Fig. 1. Note that correlation here (as throughout this article) is the Fisher’s Z-transformed Pearson correlation, which can exceed
1.  (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)
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of shared versus unshared signal changes. Note that these manip-
ulations were implemented at the neural level, and fMRI related
BOLD signals were simulated from the resulting neural activity
prior to functional connectivity estimation. Thus, these results sup-
port the possibility that covariance analysis of fMRI data may  more
accurately reflect changes in shared signal across brain regions as
opposed to artifacts of non-shared signal changes.

One potential concern with using covariances (rather than cor-
relations) for functional connectivity is the possibility that the
entire signal (shared and unshared) could be amplified artificially.
Correlations are unaffected by such scaling due to normalization
by the time series’ standard deviations. It is unclear how this could
occur in neural populations, however. This could reflect a change of
scale in the data recording equipment (e.g., scale shifts with fMRI),
suggesting a potential advantage of correlation over covariance in
practice. Further along this line of reasoning, it remains unclear how
often correlation and covariance changes diverge in practice. We
evaluate the feasibility of using covariance to measure functional
connectivity further below, both in terms of providing reasonable
estimates given the possibility of scale shifts and also in terms of
whether it actually matters which method is used in practice.

3.7. Empirically validating covariance as a functional
connectivity measure

We  next sought to test for the general feasibility of using covari-
ance as a functional connectivity measure based on empirical data.
We used the publicly available WU-Minn Human Connectome
Project fMRI dataset (118 subjects) (Van Essen et al., 2013). One
way correlation has been empirically validated as a functional con-
nectivity measure is via its consistency with known neural systems.
For instance, regions in the visual system are especially corre-
lated with each other relative to other brain systems during resting
state, and the same is true of other known systems as well (Power
et al., 2011; Yeo et al., 2011). We  used this approach with covari-
ance, with the expectation that covariance would also be higher
within than between neural systems, validating covariance as a
functional connectivity measure. Importantly, we observed corre-
lation and covariance effects relative to zero (i.e., their ability to
detect the presence of functional connectivity) rather than differ-
ences between brain states or individuals, such that both methods
should provide similar results.

We used a set of 264 brain regions (Fig. 6A) that were previously
identified using fMRI meta-analysis and an approach for identifying
areas of locally homogeneous functional connectivity (Power et al.,
2011). These regions were used because they were identified in a
distinct dataset – reducing potential statistical biases in the present
results (Kriegeskorte et al., 2009) – and because these regions have
an associated regional community partition (Power et al., 2011)
that is consistent with known brain systems.

We computed all pairwise correlations (Fig. 6B) and covarian-
ces (Fig. 6C) across the 264 regions. The regions were ordered based
on previous community partition results (Power et al., 2011), such
that connectivity clusters are apparent by visualizing the functional
connectivity matrices (i.e., blocks of red along the diagonal in Fig. 6).
T-tests relative to zero were used to put the two functional con-
nectivity measures on the same scale. Note that other measures
of effect size could have been used as well (e.g., z values, Cohen’s
d). We  found that covariances revealed a large-scale brain network
organization consistent with known systems, validating covariance
as a functional connectivity measure. See the “Details regarding
empirically validation of covariance as a functional connectivity
measure” section below for more details.

These results suggest that while covariance and correlation
give quite similar functional connectivity patterns generally, cor-
relations may  be better for detecting the absolute presence of

functional connectivity. This is primarily due to generally higher t-
values for correlations (mean absolute value t = 5.4 for correlation,
t = 4.4 for covariance), associated with 10,999 significant (p < 0.05,
FDR corrected for multiple comparisons) connections with correla-
tion and 10120 with covariance—an advantage of 879 connections
with correlation. We  used simulations to confirm this advantage
of correlations for detecting functional connections relative to 0
(though this was only true at low levels of noise; see Section 3.11).
In contrast, the above simulations predict that covariance will be
better than correlation when testing for functional connectivity
change. We test this possibility next.

3.8. Does it matter in practice?: Testing for functional
connectivity changes using empirical data

We next sought to test if correlation and covariance estimates
of functional connectivity change differ in a meaningful way across
a large set of tasks across a large set of brain regions. We  estimated
functional connectivity using both correlation and covariance dur-
ing each of seven task brain states collected as part of the Human
Connectome Project (Barch et al., 2013). These were the same sub-
jects as in the resting-state results above (Fig. 6), so we tested
for task-driven changes in functional connectivity from the results
above. Focusing on one of the tasks as a test case – the “Emotion”
task versus rest (Fig. 7A) – we found that there were 4% more sig-
nificant functional connectivity differences using covariance than
correlation, suggesting changes in unshared signal can often can-
cel out changes in shared signal with correlation (consistent with
the white diagonal in Fig. 5A). Further, we  found that 37% of the
results differed between the methods (e.g., a connection that was
significantly decreased with covariance but significantly increased
with correlation). This result strongly suggests that it matters in
practice which method is used to estimate functional connectivity
differences.

Focusing further on the whole-brain “Emotion” task versus rest
results (Fig. 7A), there was  general similarity between the results
using both methods. For instance, there was a general tendency
toward reduced functional connectivity within brain systems (i.e.,
blue along the diagonal) and increased functional connectivity
across brain systems (i.e., red off the diagonal). Notably, however,
many increases within the default-mode system with correla-
tions were not present with covariance, suggesting reductions in
unshared signals drove these correlation results (as opposed to an
actual increase in shared signals). Further, there were increases
with covariance between the default-mode and visual systems that
appeared as significant reductions with correlation. Thus, conclu-
sions regarding these large systems-level interaction changes differ
across the methods in meaningful ways.

We next quantified these patterns comprehensively across the
seven task brain states. We  found that covariance identified more
functional connectivity changes for five of the seven tasks (Fig. 7B).
We  used simulations to confirm the generally greater sensitivity
of covariances (relative to correlations) for detecting shared signal
differences (see Section 3.12). Further, greater than 20% of results
differed across the methods for every task (Fig. 7C). These results
again suggest – in a more comprehensive manner – that it matters
in practice whether correlation or covariance is used when esti-
mating functional connectivity differences between brain states.

We next applied the covariance conjunction approach (see
Fig. 3), in which results are only considered to be statistically signif-
icant if they agree across both Pearson correlation and covariance.
As expected, results were both similar and distinct from correlation
and covariance (Fig. 8). The Emotion task differed the most between
correlation and covariance conjunction at 20% of the results being
distinct, while the Gambling task differed the most between covari-
ance and covariance conjunction at 27% of the results being distinct.
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Fig. 6. Validating covariance by estimating functional connectivity relative to zero. (A) A set of 264 previously identified regions were used because of an associated partition
consistent with known neural systems (e.g., visual, auditory, default-mode). (B) Standard resting-state functional connectivity estimation with fMRI was  carried out with 118
subjects using Pearson correlation. Group t-tests versus 0 are reported for each connection, placing correlation results on the same scale as covariances. Labels are indicated
on  the right for the putative systems that the regions group into based on functional connectivity (Power et al., 2011). (C) The analysis was repeated using covariance, resulting
in  a virtually identical whole-brain functional connectivity pattern (r2 = 0.98, p < 0.00001 between the correlation and covariance t-value matrices). Results were similar for
raw  correlation and covariance matrices, and without global signal regression. These results validate covariance as a functional connectivity measure, while the following
results  focusing on functional connectivity change demonstrate distinctions between the measures. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

While results differed more with covariance, both approaches
involved a similar order of magnitude difference with covariance
conjunction. These results suggest there may  have been false posi-
tives in both correlations (likely from spurious changes in unshared
signals) and covariances (possibly from scale/variance changes),
which the conjunction approach controlled for.

Beyond purely practical implications for which method is used,
the above simulations suggest the observed effects with correlation
have a clearer interpretation when combined with covariance (i.e.,
covariance conjunction). This logic applies not only to the effects
that differ across the methods, but also to effects that are similar
across the methods, since only covariance is diagnostic of whether
shared signal (rather than unshared signal alone) changed in any
given comparison.

3.9. Explaining empirical differences between correlation and
covariance: Changes in unshared brain activity variance

A key assumption of the mathematical formulation and compu-
tational models is that unshared variance can change across groups
or time, such as when brain processing increases or decreases in a
neuron (e.g., a change in spike frequency) or a brain region (e.g.,
an increase in fMRI activity amplitude variance). As a first pass at
empirically testing this assumption, we  assessed changes in over-
all time series variance between each of the 7 tasks and rest. We
found that the variance of the following percentages of the 264
regions were significantly changed from rest for each of the 7
tasks (t-tests paired by subject, p < 0.05, Bonferroni corrected for
multiple comparisons): 97.3%, 98.9%, 73.1%, 56.8%, 79.6%, 74.2%,
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Fig. 7. Correlation versus covariance across major brain systems and diverse cognitive domains. (A) t-Tests compared all 34,716 connections for an example task (the Emotion task)
versus  rest (p < 0.05, corrected for multiple comparisons), separately using correlation and covariance. There was a rough similarity in the pattern of results, but also noticeable
differences. Generally, there were many differences across methods that would alter interpretation of functional connectivity effects. Further, the above simulations suggest
any  observed difference with covariance has a clearer interpretation (i.e., results are unlikely to be driven by unshared signal changes). (B) The percentage of connections
significantly changed (each task versus rest) was computed when using covariance and correlation, then subtracted. Results from all seven tasks are shown. (C) The percentage
of  the time that covariance and correlation gave different answers. For each task, the total number of differences in results (e.g., a connection that was significantly increased
with  covariance but significantly decreased with correlation) divided by the total number of significant results across both covariance and correlation approaches.

97.7%. Note that because this analysis involved overall variance it
did not isolate unshared variance changes, but rather indicates a
combination of both shared and unshared variance changes. We
next better isolated unshared variance by regressing out all other
regions’ time series prior to estimating the variance for each region.
This revealed the following percentages of regions (analyzed identi-
cally to the previous analysis other than the additional regressions):
82.2%, 92.0%, 73.5%, 78.4%, 74.6%, 75.4%, 93.9%. Thus, there were
significant changes in variance unshared between the 264 regions
investigated in the above analyses, which likely drove the differen-
tial results observed between correlation and covariance measures
reported above. Note that all of these analyses were conducted after
removing task regressor variance, such that trial-averaged mean
amplitude effects are unlikely to explain the observed changes
in unshared variance. This suggests moment-to-moment and/or
trial-to-trial fMRI signal variability changes between rest and task
performance—a proof of principle for unshared variance changes

due to brain activity changes in other contexts (e.g., between
groups, individuals, temporal windows).

3.10. Details regarding empirically validation of covariance as a
functional connectivity measure

The distribution of functional connectivity measures across
subjects must be approximately normally distributed in order to
utilize standard parametric tests to test hypotheses at the second
(group) level. Fisher’s z-transform is used to allow Pearson corre-
lation to have this property. We  verified this empirically using a
standard test of normality, the Kolmogorov–Smirnov test. None
of the 34,716 correlations in Fig. 6B significantly deviated from
a normal distribution (p < 0.05, Bonferroni corrected for multi-
ple comparisons). Only 0.3% of the 34,716 covariance in Fig. 6C
significantly deviated from a normal distribution (p < 0.05, Bonfer-
roni corrected for multiple comparisons). This suggests that it is
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Fig. 8. The covariance conjunction approach. (A) The statistically significant correlation (p < 0.05, FDR corrected) and statistically significant covariance (p < 0.05, FDR corrected)
results  from Fig. 7A were combined via conjunction to implement the “covariance conjunction” approach. Conjunctions were calculated separately for increases and decreases
from  0. (B) The percentage of different results between covariance conjunction and correlation are shown. (C) The percentage of different results between covariance
conjunction and covariance are shown.

likely appropriate to use second-level parametric tests (e.g., t-tests)
with covariances.

The whole-brain pattern of covariances appeared similar to
those of correlations. However, there were some large deviations in
the raw value covariance matrix that were not present in the corre-
lation matrix, which were controlled for using group-level t-tests
(Fig. 6C). These deviations reflect the fact that unlike correlations
(and group-level t-values) each raw covariance value is in units
dependent on the regions being tested (region X variance × region
Y variance units). Thus, if some regions have substantially different
activity variance amplitudes than most regions they will appear
as large deviations in covariance. The identified deviations repre-
sented only a small fraction of the total number of connections:
36 covariances above a value of 2000, representing 0.1% of connec-
tions. Most of these deviations were covariances among subcortical
regions. Note that this particular dataset is known to have lower
subcortical signal-to-noise than most fMRI datasets, given that a
32-channel head coil was used (Van Essen et al., 2013). Correla-
tions do not show these deviations because they standardize their
values by dividing by the time series standard deviations—a solu-
tion to this problem but the cause of the problems identified in

the simulations. These deviations were eliminated by standard-
izing covariances at the group level using t-tests, which involves
dividing each connection’s across-subject mean value by its across-
subject standard deviation (in contrast to dividing by the standard
deviations of the time series with correlations).

3.11. Simulating the advantage of Pearson correlations for
detecting shared signal relative to 0

We  found that t-values tended to be higher for correlations
than covariances when detecting connections (relative to 0) in the
empirical data (Fig. 6). We  next sought to test if this effect was
present in the simulations. Identifying this effect in the simulations
would help generalize the result beyond the particular empirical
tests we conducted.

We  used the same simple simulation setup as used in Fig. 1. We
found that with small amounts of time series noise (0.25; the same
as in Fig. 1) group analysis t-values (testing versus 0) were consis-
tently much larger with correlations than covariances. To illustrate
this we ran 100 simulations, finding that the mean correlation-
based t-value was  126, while the mean covariance-based t-value
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was 52. We  ran a t-test comparing the distributions of correlation-
based and covariance-based t-values, to establish the consistency of
this result: t(99) = 29, p < 0.00001. Importantly, however, this effect
went away with high amounts of time series noise (4× the ampli-
tude of the shared signal). In this scenario mean correlation-based
t-value was 4.19, while the mean covariance-based t-value was  4.18
(t(99) = 0.16, p = 0.9). This suggests that correlations only have an
advantage over covariances at low levels of noise. Generally, we
found – using both empirical data and simulations – that corre-
lations are more sensitive than covariances for detecting shared
signal relative to 0.

3.12. Simulating the advantage of covariance for detecting shared
signal differences

We  found with most brain state comparisons that there were
more significant differences in connectivity when using covarian-
ces than correlations (Fig. 7)—the opposite of the result found when
testing for connections relative to 0. We  next sought to test if this
effect was present in the simulations. Identifying this effect in the
simulations would help generalize the result beyond the particular
empirical tests we conducted.

We found that covariances showed consistently larger t-values
when comparing large to small amounts of shared signal (the
same test as in Fig. 1, left side). To illustrate this consistency we
ran 100 simulations: Mean covariance t-value: 38.83, mean cor-
relation t-value: 34.82 (difference t(99) = 5.05, p < 0.00001). Unlike
the advantage of correlation for detecting effects versus 0, this
result was stable at high levels of noise (4×  the amplitude of
the shared signal). Mean covariance t-value at high noise: 8.23,
mean correlation t-value at high noise: 7.35 (difference t(99) = 5.93,
p < 0.00001).

In summary, we found – using both empirical data and simula-
tions – that correlations are more sensitive for detecting shared
signal relative to 0, while covariances are more sensitive for
detecting differences in shared signal. In most cases, however, we
recommend using the covariance conjunction approach, which will
only be as sensitive as the least sensitive measure (in this case cor-
relation). We  next examine a case in which one might choose to
forgo this recommendation in order to take advantage of increased
sensitivity of covariance to detect functional connectivity change.

3.13. Measuring functional connectivity differences across
groups: Application to schizophrenia

Above we demonstrated the impact of using covariance (versus
correlation-like measures) as a functional connectivity measure
with both simulated and empirically-derived data in healthy adults.
We next examined if using covariance can have an impact on clini-
cal between-group connectivity analyses where it is expected that
one group would differ in connectivity patterns. To test this hypoth-
esis, we  analyzed a large sample of patients with schizophrenia
(N = 71) relative to a group of healthy matched controls (N = 74).
We focused on the statistical relationship between two  large-
scale neural systems that have been repeatedly implicated in
schizophrenia—the default-mode network (DMN) and the front-
oparietal control network (FPCN) (Baker et al., 2014). The networks
were defined using a voxelwise partition previously identified in
healthy adults (Power et al., 2011). We  found that patients exhib-
ited significantly increased covariance between the DMN  and FPCN
(Fig. 9A). Interestingly, the effect was attenuated and no longer
significant when using correlations (Fig. 9C). This discrepancy
occurred because of elevated variance within both DMN  and FPCN
for patients relative to controls (Fig. 9B). Illustrating the reason for
this effect, we present the full correlation equation in relation to
these data (Fig. 9, bottom panel). This illustrates that dividing the
covariance by a relatively larger variance for patients will by def-
inition result in a reduction of the correlation (Yang et al., 2014).
Collectively, these clinical effects show how use of correlations can
obscure a possible clinically-relevant difference in connectivity due
to alterations in unshared signals. In contrast, covariance remained
sensitive to the connectivity difference between the DMN  and
FPCN, a hypothesis suggested by recent work (Baker et al., 2014).
Note, however, that even if there were no differences between
covariance and correlation results, the above simulations demon-
strate that we would gain additional insight into these effects by
using covariance (e.g., confidence that results were not driven by
unshared variance differences between patients and healthy con-
trols). Further, it should be noted that this effect could plausibly (but
not necessarily) be caused by an overall increase in variance/power,
such that the increase in functional connectivity is apparent rather
than actual. We  recommend the covariance conjunction approach
(Fig. 3) in order to help rule out erroneous conclusions.

Fig. 9. Detected disruptions across functional networks in schizophrenia differ between covariance and correlation. (A) Here we  show altered covariance structure between
large-scale associative networks in schizophrenia (SCZ), similar to recent findings (Baker et al., 2014) [t(143) = 2.37, p = 0.019, Cohen’s d = 0.4]. (B) We recently discovered
elevated variance across the entire brain in chronic SCZ, which was particularly evident for associative networks (Yang et al., 2014). (C) Based on this elevated non-shared
variance, it follows that the difference in correlations between SCZ and healthy control subjects (HCS) across the two networks will be attenuated and no longer reveal a
significant clinical effect [t(143) = 1.48, p = 0.14, Cohen’s d = 0.25]. The equation on the bottom is presented for illustrative purposes, to highlight the importance of carefully
decomposing the final correlation into variance and covariance components (Fig. 3). FPCN, fronto-parietal control network; DMN, default-mode network.
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4. Discussion

Despite decades of neuroscience research our basic understand-
ing of what constitutes functional connectivity change (and how
to measure it) is still evolving. Attention has recently been drawn
to the issue of increased noise in one condition or group pro-
ducing reductions in correlations (and related measures) (Behseta
et al., 2009; Friston, 2011), potentially resulting in false posi-
tives and false negatives across a range of studies. We  postulated
that the broader concept of “unshared signal” change is even
more problematic for correlation-like measures. We reasoned that
changes in independent neural processing would likely alter cor-
relations despite no change in interactions among the tested
regions/neurons. We  verified this concern using a simple and gen-
eralizable simulation (Fig. 1), mathematical theory, as well as a
more complex biologically plausible simulation of large-scale neu-
ral dynamics (Fig. 5). Across these analyses, we demonstrate that
correlation changes were difficult to interpret due to their sensi-
tivity to changes in unshared signal. In contrast, we  demonstrate
that covariance was sensitive to shared signal alone, increasing the
interpretability of observed functional connectivity change. This
was especially true for cases in which both covariance and correla-
tion agree: the covariance conjunction approach. Following these
simulations, we applied this method to empirical datasets, finding
that it mattered in practice which functional connectivity mea-
sure was used, and that covariance provided robust results for both
within-subject and across-group functional connectivity changes.
Even if results had been less robust with covariance, however, we
would still recommend its use as our comprehensive characteriza-
tion of the relevant parameter space (Fig. 4) indicates this measure
– especially when combined with more standard measures – yields
increased interpretability of functional connectivity effects gener-
ally.

Our findings suggest results reported by most previous stud-
ies of functional connectivity change (even most that did not use
correlations, such as those using PPI) are difficult to interpret
because of ambiguity concerning shared versus unshared signal
contributions. This includes any studies involving a difference
in functional connectivity estimates, such as across groups (e.g.,
clinical studies), tasks, individuals (e.g., individual difference corre-
lations), or dynamics (e.g., resting-state dynamics across temporal
windows). Note that correlation-based studies seeking to simply
identify any difference (e.g., between groups) are likely valid in
their identification of differences. However, due to the ambiguity
of correlation-like measures, such studies may  have misinterpreted
results in terms of brain interaction change. The ability to accurately
interpret observed differences will be important moving forward,
given the ultimate neuroscientific goal of increasing mechanistic
understanding of brain processes (rather than, e.g., simply identi-
fying ambiguous group differences).

To further illustrate the difficulty of interpreting changes in
correlation-like measures, consider the possible range of dis-
tinct interpretations (as established by the simulations above) of
an observed increase in correlation between two regions’ time
series: (1) decreased independent activity in region X and/or Y, (2)
decreased interaction between Y and another region Z resulting
in less unshared signal in region Y (Fig. 2), (3) increased inter-
action between X and Y. Covariance is also problematic, though
less so, as an increase in covariance would have only two  viable
interpretations: (1) increased interaction between X and Y, or (2)
increased overall variance/power in either X and/or Y. In contrast,
an increase in the covariance conjunction measure (combining
correlation and covariance) would have only a single viable inter-
pretation: increased interaction between X and Y.

Correlations have been historically favored over covariance in
many scientific applications because correlations are normalized by

variance, making them insensitive to changes in scale and facilitat-
ing comparison across studies. These constitute major advantages
in some cases, but we  found that normalization by variance has
unintended consequences when estimating functional connectiv-
ity differences. Rather than simply estimating change in an abstract
measure of association, differences in correlation can be driven by
changes in the unshared variance component, such that the very
aspect we are trying to “control for” (the overall variance) actually
drives the measured effect. This is not an issue only for correla-
tion, but any measure that normalizes by some form of variance (or
entropy), such as coherence, regression, and mutual information
(Fig. 4). We  found that simply removing variance normalization
from correlation (i.e., using covariance) circumvented these issues.
We suggest that removing variance normalization from other
measures may  help solve this problem in other cases when esti-
mating connectivity change (see Results for preliminary evidence
with coherence). Such measures without variance normalization
could then be combined with the original measures to allow imple-
mentation of the covariance conjunction approach—ruling out
spurious changes in functional connectivity due to either changes
in unshared variance or overall variance/power.

4.1. Limitations

As outlined above, there are several issues to consider
when using covariance. First, since covariance is sensitive to
changes in scale, care should be taken to ensure no scale
shifts have occurred across conditions/groups/individuals that are
being compared. Note, however, that this same issue is often
present when comparing brain activity magnitudes across con-
ditions/groups/individuals, such that this issue may be no worse
here than in most existing neuroscientific studies of brain function
(which have tended to test for activation magnitude changes rather
than functional connectivity changes). Our recommendation is to
sidestep this issue using the conservative “covariance conjunction”
approach (Fig. 3).

Another potential issue with covariance is its non-standard
units: each covariance estimate is in units of region X activ-
ity × region Y activity. This reflects the non-normalized nature of
covariance relative to correlation. This is not an issue in the case
of functional connectivity change for a given pair of regions since
the compared conditions/groups/individuals always have the same
units (i.e., region X activity × region Y activity). This is problem-
atic for performing across-connection comparisons, however, just
as across-region activity comparisons are problematic with some
methods (e.g., fMRI, Handwerker et al., 2004) due to potential dif-
ferences in activation scale across regions. However, we  found that
covariances could be normalized at the group level (using inter-
subject variance) with t-tests, which eliminated scale differences
across covariances (Fig. 6). Note that having distinct units across
connections may  be an issue for some graph theoretical (Bullmore
and Bassett, 2011) analyses (especially at the single-subject level)
that focus on network topology (e.g., community detection) but
potentially not for others (e.g., degree centrality).

Using covariance does not eliminate all issues present when
using correlation-like measures to estimate functional connectivity
change. For instance, like correlations (Smith et al., 2011b), cova-
riances do not estimate directionality of functional connectivity
changes. It will be important to determine which of the exist-
ing directional/effective connectivity methods (Friston et al., 2003;
Roebroeck et al., 2005; Nolte et al., 2008; Ramsey et al., 2011; Smith
et al., 2011b) involve variance normalization, and if all of them do,
then it will be important to develop new approaches that do not
involve this analysis step for studies examining effective connec-
tivity change. Importantly, there is already evidence of advantages
when using an unnormalized version of a popular form of effective
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connectivity, Granger causality (Angelini et al., 2010; Stramaglia
et al., 2015).

Another limitation is that, like correlations and most other func-
tional connectivity measures (Smith et al., 2011b), covariances do
not indicate if two regions are interacting directly or indirectly
via a third (or fourth, fifth, etc.) region(s). This affects interpre-
tation, but is often not problematic as long as it is taken into
account. It may  be possible, however, to estimate direct functional
connectivity change using some form of partial correlation (or mul-
tiple regression) (Marrelec et al., 2006; Liang et al., 2011; Smith
et al., 2011b; Ryali et al., 2012). It is important to note that par-
tial correlation involves variance normalization and therefore faces
limitations similar to standard correlations with respect to changes
in unshared variance. Also note that, despite its name, inverse
covariance also involves variance normalization. In the future it
may  be useful to identify partial correlation-like approaches that
are adapted to not include variance-based normalization. One
promising possibility is to use multivariate Granger causality with-
out variance-based normalization (Angelini et al., 2010; Stramaglia
et al., 2015), which estimates all time series simultaneously to
achieve the main benefits of partial correlation in the context of
directional connectivity. Note, however, that potential issues with
using Granger causality with fMRI have been identified (Smith et al.,
2011a, 2011b), such that this approach may  be best applied to other
modalities such as EEG. The inability to infer whether two regions
are interacting directly notwithstanding, the present results sug-
gest using covariances provides increased confidence that a change
in connectivity between two regions reflects their shared signal
change (irrespective of whether this occurred via a 3rd region; see
Fig. 2).

We  recommend the use of covariance conjunction, in which
the results of correlation and covariance analyses are combined,
in order to remain conservative. This combines the benefits of both
correlation (insensitivity to overall variance scaling) and covari-
ance (insensitivity to changes in unshared variance) in terms of
reducing Type I errors (false positives). However, as illustrated in
Figs. 4 and 5, this comes with the possibility of increased Type II
errors (false negatives). For instance, a real increase in interaction
may  be accompanied by increases in independent processing in
each tested region (unshared signal), resulting in an increase in
covariance but not correlation. This would lead to a false negative
when using the conjunction approach. We  nonetheless recommend
this approach given the possibility that an increase in both shared
and unshared signal may  also reflect an overall variance increase.
It will be important for future work to look for ways to maintain all
the benefits of covariance without its potential drawbacks.

We found that, in contrast to functional connectivity changes,
correlations may  be better for detecting the absolute presence of
functional connections relative to zero. This supports the use of
correlations to detect the absolute presence of functional connec-
tivity, as performed by many resting-state functional connectivity
studies (Biswal et al., 1995; Power et al., 2011; Yeo et al., 2011).
Importantly, however, we reached the opposite conclusion in the
case of detecting functional connectivity change.

4.2. Interpreting covariance differences in the empirical datasets

We  specifically focused on functional connectivity differences
between an emotion task and rest (Fig. 7A), identifying numerous
differences between the measures. There were similarities between
the methods as well, however. For instance, there were within-
network decreases for motor, auditory, and visual systems across
both methods, consistent with recent findings (Cole et al., 2014).
Notably, these decreases were more robust when using covariance,
even extending the within-network decreases to other systems.
This suggests that such within-network decreases in functional

connectivity are either more widespread than indicated by cor-
relations or, alternatively, that these decreases are largely due
to decreases in overall variance/power. It will be important for
future research to investigate the possible mechanisms underly-
ing such widespread within-network decreased covariance. One
possible interpretation is that task-focused attention (“cognitive
set”) (Duncan, 2013) requires reduced interactions within most
brain systems to facilitate selection of task-relevant regional inter-
actions, possibly including primarily inter-system interactions (e.g.,
visual-to-motor system interactions in a visual-motor task). This
possibility is consistent with our recent study demonstrating
extensive inter-system interaction changes across a variety of tasks
(Cole et al., 2013). Note that in addition to using correlation and PPI
we also found those effects using covariance differences (see that
paper’s supplementary results) (Cole et al., 2013).

There is growing interest in establishing functional connectivity
differences across different groups and clinical states to charac-
terize dysfunctional neural dynamics. Functional connectivity has
become a particularly powerful and widely used approach to char-
acterize large-scale neural dynamics in severe neuropsychiatric
illnesses such as schizophrenia (Anticevic et al., 2013, 2014). Use
of correlation in such cases could be problematic for the same
reasons articulated above: correlation differences can be driven
by changes in unshared signal in one group relative to another,
resulting in false positives or false negatives. To provide evidence
for this, we  examined functional connectivity differences between
patients diagnosed with chronic schizophrenia and healthy con-
trols. We  focused on two  well-characterized systems with known
disruptions in schizophrenia (Baker et al., 2014): DMN  and FPCN. As
predicted, we found that covariance revealed a connectivity alter-
ation in patients relative to controls that was not evident when
using correlations—consistent with our network simulations and
demonstrating that covariance can reveal a distinct set of functional
connectivity differences from correlation in a clinical context.

4.3. Practical recommendations for the use of covariance as a
functional connectivity measure

We have demonstrated the complexity of interpreting changes
in correlation (and a variety of other measures), and the rela-
tively improved clarity of interpreting changes in covariance. This
suggests covariance may  be preferred when testing for brain inter-
action changes. Despite this, caution suggests the use of more
typical functional connectivity measures in addition to covariance.
As outlined above (Figs. 3 and 8), one possibility would be to con-
duct both correlation and covariance analyses, assigning the most
confidence to results that are consistent across both approaches.
In addition, there may  be cases in which correlation is more sen-
sitive than covariance, such as when each subject’s data are scaled
differently. In such cases there would be additional irrelevant inter-
subject variance that would reduce statistical confidence in effects
of interest. In cases where within-subject manipulations are used,
subtracting covariances prior to the group analysis (as in a paired
t-test) can reduce such inter-subject variance concerns. Alterna-
tively, after subtracting covariances at the single subject level the
resulting difference can then be divided by the standard deviation
(aggregate across both conditions) to rescale the result prior to
group analysis. Finally, it may  be possible in some cases to rescale
time series based on the time series mean—a percent signal change
normalization approach often used with fMRI that is unlikely to be
biased by changes in unshared variance.

4.4. Conclusion

We used mathematical and biologically realistic simula-
tions to arrive at a theoretically important conclusion: variance
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normalization (as performed by most commonly used measures)
can obscure estimates of functional connectivity change. This
applies primarily to cases that involve unshared signal alterations,
though even cases without such alterations are obscured for the
investigator due to uncertainty whether such unshared signal alter-
ation occurred (e.g., in Fig. 7A decreased correlations were only
interpretable due to similar decreases in covariance). This theoret-
ical insight, corroborated by empirical evidence, has implications
for a wide variety of previous and future studies, as estimating
functional connectivity change is central to understanding the
functional relevance of brain connections (by associating them with
task conditions, individual differences, and group differences) and
for characterizing brain connectivity dynamics. Removing variance
normalization from other measures may  similarly improve clarity
in other context as well (e.g., lag-invariant functional connectivity
using coherence). Generally, these findings suggest a need to recon-
ceptualize functional connectivity change in terms of shared signal
differences, rather than in terms of abstract measures of association
that may  obscure effects of interest.
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