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a b s t r a c t 

Alzheimer’s disease (AD) is linked to changes in fMRI task activations and fMRI resting-state functional connec- 

tivity (restFC), which can emerge early in the illness timecourse. These fMRI correlates of unhealthy aging have 

been studied in largely separate subfields. Taking inspiration from neural network simulations, we propose a 

unifying mechanism wherein restFC alterations associated with AD disrupt the flow of activations between brain 

regions, leading to aberrant task activations. We apply this activity flow model in a large sample of clinically 

normal older adults, which was segregated into healthy (low-risk) and at-risk subgroups based on established 

imaging (positron emission tomography amyloid) and genetic (apolipoprotein) AD risk factors. Modeling the 

flow of healthy activations over at-risk AD connectivity effectively transformed the healthy aged activations into 

unhealthy (at-risk) aged activations. This enabled reliable prediction of at-risk AD task activations, and these 

predicted activations were related to individual differences in task behavior. These results support activity flow 

over altered intrinsic functional connections as a mechanism underlying Alzheimer’s-related dysfunction, even in 

very early stages of the illness. Beyond these mechanistic insights, this approach raises clinical potential by en- 

abling prediction of task activations and associated cognitive dysfunction in individuals without requiring them 

to perform in-scanner cognitive tasks. 
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. Introduction 

Analyzing the synchronization of activity fluctuations in task-free

est is thought to provide insight into the brain’s intrinsic network or-

anization ( Raichle, 2010 ; Petersen and Sporns, 2015 ). Formalized in

he subfield of resting-state functional connectivity (restFC), such ap-

roaches have primarily been applied to human functional magnetic

esonance imaging (fMRI) data. As testament to the reproducibility of

estFC, convergent network topologies have been recovered across dif-

erent regional atlases ( Power et al., 2011 ; Ji et al., 2019 ), non-fMRI hu-

an imaging modalities ( Brookes et al., 2011 ; Kucyi et al., 2018 ) and

on-human animals ( Wang et al., 2013 ; Stafford et al., 2014 ). Whilst

hese findings highlight that restFC is reliably observed, debate per-

ists over its cognitive relevance, given that the experimentally uncon-

trained nature of rest raises practical difficulties in separating signal

rom noise ( Power et al., 2012 ; Laumann et al., 2016 ), as well as theo-

etical difficulties in moving from an exploratory to explanatory under-

tanding of brain network function ( Mill et al., 2017 ). 

Evidence of restFC’s cognitive relevance comes from clinical re-

earch linking restFC alterations to pathology ( Buckner et al., 2008 ;
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uckholtz and Meyer-Lindenberg, 2012 ). Given the severe prognosis

nd societal burden of Alzheimer’s disease (AD), much of this work

as interrogated restFC changes characterizing various forms of healthy

nd unhealthy aging ( Andrews-Hanna et al., 2007 ; Sorg et al., 2007 ;

erreira and Busatto, 2013 ; Geerligs et al., 2015a ; Ferreira et al., 2016 ).

urgeoning research focuses on restFC changes in early at-risk stages

f AD ( Hedden et al., 2009 ; Sheline and Raichle, 2013 ; Schultz et al.,

017 ), as neurobiological abnormalities such as elevated positron emis-

ion tomography (PET) measures of amyloid beta may precede clinical

mpairment by many years ( Jack et al., 2010 ; Sperling et al., 2011 ).

lzheimer’s-related alterations of restFC emerge around the same time

s elevated amyloid ( Sheline and Raichle, 2013 ) and have been asso-

iated with presence of the genetic apolipoprotein (APOE) 𝜀 4 allele

 Sheline et al., 2010 ), suggesting utility of restFC in developing imaging

iomarkers to expedite diagnosis and intervention. 

Recent reports have extended towards using restFC to quantita-

ively predict or classify age-related conditions ( Dosenbach et al., 2010 ;

oo et al., 2017 ; Du et al., 2018 ). However, reported failures of

redictive models in generalizing out-of-sample ( Onoda et al., 2017 ;

eipel et al., 2017 ; Fountain-Zaragoza et al., 2019 ) highlight limitations
2020 
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Fig. 1. Theoretical and methodological principles underlying application of activity flow mapping in an integrated connectivity-activity account of at-risk Alzheimer’s 

disease (AD). a) Abstract theoretical underpinnings of activity flow mapping – which is based on the core mechanism underlying neural network simulations – in a 

clinical context. A ‘healthy’ aged task activation pattern is transformed into an ‘unhealthy’ aged activation (i.e. one associated with being at-risk for developing AD) 

by an altered pattern of resting-state functional connectivity (restFC) in at-risk subjects disrupting the ability for task activations to flow between brain regions. b) 

Methodological formalization of the activity flow mapping approach. Task activation in a held-out brain region (j) in a held-out at-risk AD subject is predicted from 

the dot product between the healthy activation state of the rest of the brain (regions i, estimated as the mean activation in the healthy group) and the restFC between 

i and j (estimated from the to-be-predicted at-risk subject). See Methods for further details. 
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f entirely data-driven approaches to predicting Alzheimer’s-related

athologies, especially as artifactual contaminants of restFC can drive

linical group differences ( Siegel et al., 2016; Hodgson et al., 2017 ).

hese findings again call for increased efforts to clarify the cognitive

elevance of restFC, so as to identify clear mechanisms by which restFC

lterations impact on AD and other pathologies. 

To this end, we recently developed an approach inspired by neu-

al network simulations to mechanistically predict task activations from

estFC via the concept of activity flow (the propagation of task-evoked

ctivity between neural populations; Cole et al., 2016 ; Ito et al., 2017 ).

his approach directly interrogates the cognitive relevance of restFC,

iven that tasks are designed to elicit particular cognitive processes.

urthermore, in addition to restFC, fMRI task activations are disrupted

n various forms of aging ( Grady, 2012 ; Campbell and Schacter, 2017 ),

aising the potential for age-related alterations of restFC and task acti-

ations to arise from a common activity flow mechanism. 

The present report sought empirical evidence for this mechanism

 Fig. 1 ). We hypothesized that unhealthy age-related restFC alterations

isrupt the ability for activity to flow between brain regions, leading to

he emergence of dysfunctional task activations. We tested this frame-

ork in clinically normal older adults, a subset of whom presented pos-

tively for PET amyloid or APOE risk factors for AD, which were sepa-

ately used to define ‘at-risk’ subjects. We found that activity flow map-

ing reliably predicted task activations in held-out at-risk AD subjects

rom their pattern of restFC. We extended the approach to accurately

redict individual differences in task behavior from the model’s pre-

icted activations, observing superior performance to using ‘raw’ restFC

eatures that had not been passed through the model. These results sup-

ort activity flow alterations as a mechanism underlying age-related

ysfunction, even in the earliest stages of AD. 
. Materials and methods 

.1. Participants 

The sample comprised 101 right-handed elderly subjects (age

ean = 65.1 years, age range = 42–82 years, 63 female) collected as part

f the Adult Children Study at the Knight Alzheimer’s Disease Re-

earch Center at Washington University in St Louis (Knight ADRC,

ttps://knightadrc.wustl.edu/ ). All participants gave their informed

onsent in compliance with Washington University’s human subjects

uidelines. Full details of behavioral and neuroimaging measures ac-

uired by the Knight ADRC project are available in Gordon et al. (2015 ).

ubjects included in our sample underwent behavioral (Mini Mental

tate Exam, MMSE; Folstein et al., 1975 ) and neuropsychological (Clini-

al Dementia Rating, CDR; Morris, 1993 ) assessment, rest and task fMRI

cans, structural MRI scans, 11 [C] Pittsburgh Compound B (PiB)-PET

maging for high levels of amyloid beta uptake, and a DNA swab testing

or presence of the apolipoprotein (APOE) 𝜀 4 allele. All subjects were as-

essed as clinically ‘normal’ at the time of recruitment (Mini Mental State

xam, MMSE score > 24; Clinical Dementia Rating, CDR = 0). All sub-

ects passed the exclusion criteria of high motion across runs (subjects

ith an average absolute movement > 1.50 mm or an average relative

ovement of 0.5 mm were excluded from our sample), presence of neu-

ological damage (stroke or traumatic brain injury), and a lag between

heir fMRI and PiB-PET imaging sessions greater than 90 days. Note that

his Knight ADRC sample was the largest AD-related sample available

t the time of analysis that had both a sufficient amount of resting-state

ata, and data collected from multiple cognitive tasks (both integral to

ur analyses; see Discussion for further on issues relating to sample size

n AD research). 

https://knightadrc.wustl.edu/
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Table 1 

Demographic information for the two at-risk AD segregation approaches: 

APOE and amyloid. MMSE = Mini Mental State Exam scores; Std = standard 

deviation; RT = mean cross-task reaction time (in ms); zRT = mean cross-task 

reaction time after z-scoring across trials; Acc = task accuracy (in%). ∗ = at- 

risk versus healthy group comparison is significant at p < .05 (via paired 

ttest computed for a given segregation type). 

Segregation type 

APOE Amyloid 

Group At-risk Healthy At-risk Healthy 

Size (n) 33 68 20 81 

Age (years) Mean 64.67 64.76 70.30 63.36 

Range 53–78 42–82 55–82 42–79 

Gender (n female) 20 43 15 48 

MMSE Mean 28.97 ∗ 29.50 ∗ 28.80 ∗ 29.46 ∗ 

Std 1.51 0.91 1.58 1.00 

Cross-task RT Mean 859.65 868.88 876.68 863.19 

Std 108.26 97.10 121.99 95.07 

Cross-task zRT Mean − 0.0074 − 0.0073 − 0.0069 − 0.0074 

Std 0.021 0.012 0.019 0.014 

Cross-task Acc Mean 96.63 ∗ 97.63 ∗ 96.28 ∗ 97.56 ∗ 

Std 2.91 1.43 3.42 1.50 

2

 

a  

r  

t  

d  

c  

r  

f  

o  

(  

d  

d  

(  

r  

s  

a  

s  

I

2

 

c  

r  

a  

t  

b  

fl  

i  

t  

r  

R  

(  

i  

1  

fi  

r

 

i  

c  

2  

t  

t  

a  

m  

a  

F  

2  

v  

e  

t  

f  

t  

c  

t  

g  

m  

t  

e  

t  

u  

a  

n  

c

 

w  

P  

i  

b  

fi  

‘  

t  

i  

i  

a  

2  

s  

t  

s  

2

 

b  

i  

t  

r  

t  

a  

j  

i  

c  

T  

p  

e  

(  

‘  

t  

p  

r  

e  

M  

t  

c  

i  

r  

b  

a

.2. Segregation of sample into at-risk and healthy aged groups 

We binarized the APOE 𝜀 4 and PiB-PET amyloid beta measures sep-

rately to provide distinct methods of segregating our sample into ‘at-

isk AD’ (i.e. ‘unhealthy’) and ‘healthy’ subject groups. This enabled us

o test the generalizability of the activity flow mapping approach across

ifferent ways of identifying at-risk subjects. The APOE segregation was

reated by labeling any subject with at least one APOE 𝜀 4 allele as at-

isk, and all other subjects as healthy (see Table 1 for demographic in-

ormation). At-risk subjects were identified in the amyloid segregation

n the basis of a standardized PiB uptake ratio (SUVR) greater than 1.42

following Jack et al., 2017 ; Vlassenko et al., 2018 ; see Section 2.3 for

etails), with the remaining subjects classified as healthy. Note that our

efinition of at-risk AD encompasses both previously adopted at-risk

APOE 𝜀 4 genotype) and preclinical (elevated PET amyloid) AD catego-

izations. For brevity, the Results section focuses primarily on the APOE

egregation due to the larger at-risk group obtained compared to the

myloid segregation (see Table 1 ). However, the pattern of observed re-

ults is virtually identical for both segregation types (see Supplementary

nformation section 1.1). 

.3. Data acquisition and preprocessing 

MRI data was collected on a Siemens Trio 3T scanner. Anatomi-

al T1-weighted images were acquired via a magnetization-prepared

apid gradient-echo sequence (MPRAGE; TR = 2400 ms, TE = 3.16 ms, flip

ngle = 8°, field of view = 256 mm, 1 mm isotropic voxels, sagittal orien-

ation). Task fMRI images were acquired using an interleaved whole-

rain echo planar imaging (EPI) sequence (TR = 2000 ms, TE = 25 ms,

ip angle = 90°, field of view = 256 mm, 4 mm isotropic voxels, 36 slices

n interleaved sagittal orientation). Task fMRI data was collected for

wo tasks (see next section for paradigm details): semantic animacy (2

uns, 303 volumes each) and color Stroop (2 runs, 295 volumes each).

esting-state fMRI images were acquired using a similar EPI sequence

TR = 2200 ms, TE = 27 ms, flip angle = 90°, field of view = 256 mm, 4 mm

sotropic voxels, 36 slices in interleaved sagittal orientation; 2 runs,

64 volumes each). Separate dual-echo gradient-recalled echo (GRE)

eldmaps were also acquired to correct b0 distortions in the task and

est EPI images respectively. 

The full analysis pipeline is depicted in the flowchart in Fig. 2 . T1

mages were segmented using Freesurfer ( Fischl, 2004 ). fMRI prepro-

essing was conducted in FSL using the FEAT toolbox ( Woolrich et al.,

001 ). Subjects’ task and rest fMRI images underwent motion correc-

ion, fieldmap b0 unwarping, slice timing correction, linear coregistra-
ion to their anatomical T1 and non-linear normalization to an age-

ppropriate MNI template (created from a separate large sample of de-

ographically matched older adults; Gordon et al., 2015 ). Subsequent

nalyses were conducted at both the regionwise and voxelwise levels.

or the regionwise analyses, task and rest timeseries were extracted from

64 regions from the Power functional atlas ( Power et al., 2011 ). For the

oxelwise analyses, timeseries were extracted from all gray matter vox-

ls. Nuisance regression was performed for the regionwise/voxelwise

imeseries via general linear models (GLMs), which included regressors

or 6 motion parameters, white matter and ventricular timeseries, and

heir temporal derivatives. The GLM fit to the task fMRI data also in-

luded regressors for the two tasks (see next section for details). Note

hat the main results were virtually identical if a regressor modeling the

lobal signal (GSR) was included in the task and rest GLM, and if high

otion timepoints were scrubbed from the rest GLM (see Supplemen-

ary Information section 1.1.; note that high motion subjects were also

xcluded from the sample, see Section 2.1 ). The residual timeseries from

he rest GLM and the beta activation amplitudes from the task GLM were

sed for the main activity flow mapping analyses. The voxelwise beta

ctivation maps were spatially smoothed using non-Gaussian nearest-

eighbor averaging (at 4 mm), which reduces spatial autocorrelation

ompared to Gaussian smoothing. 

Full details about PiB-PET acquisition in the Knight ADRC project

as provided previously ( Su et al., 2013 ). Briefly, after injection of the

iB tracer subjects underwent 60 min dynamic PET imaging scans us-

ng a Siemens 962 HR + ECAT scanner. A summary measure of whole-

rain PET amyloid was estimated from anatomical atlas regions identi-

ed from Freesurfer segmentations of each subject’s T1 image (using the

wmparc’ segmentation; Fischl, 2004 ). Errors in the Freesurfer segmen-

ation were identified and corrected manually. The Freesurfer regions of

nterest were then aligned to the native PET images, and the standard-

zed uptake value ratio (SUVR) was computed as the median PiB uptake

t each region relative to a cerebellar reference (following Rousset et al.,

008 ; Su et al., 2015 ). SUVR was averaged across regions to provide a

ummary measure of whole-brain PET amyloid deposition, which was

hen binarized to label at-risk AD and healthy subjects for the Amyloid

egregation (whole-brain SUVR > 1.42 = at-risk; Vlassenko et al., 2018 ).

.4. Experimental design and fMRI task activation estimation 

The design of the two tasks is depicted in Fig. 3 a. Each task was

riefly practiced by subjects just prior to their fMRI sessions. Both tasks

nvolved word stimuli presented in a block design, with the presenta-

ion format and durations matched closely across them. There were 2

uns of each task, each alternating between 4 task blocks (containing 24

rials with jittered intertrial intervals) and 5 rest intervals. The semantic

nimacy task preceded the color Stroop task, and required subjects to

udge whether individually presented words referred to living or nonliv-

ng things. Words used in this task were balanced across living/nonliving

ategories in terms of length, orthographic neighborhood and frequency.

he color Stroop task required participants to judge whether words were

resented in a red or blue font; the words’ meaning was either ‘congru-

nt’ with the font color (e.g. the word ‘red’ in red font), ‘incongruent’

e.g. the word ‘blue’ in red font), or ‘unrelated’ to color (e.g. the word

deep’ in red font). Stimulus classes for both tasks were balanced within

ask blocks (e.g. equal numbers of living and non-living words were

resented for each animacy task block, in a randomized order). For the

esting-state fMRI scans, subjects lay passively in the scanner with their

yes open. fMRI task activation amplitudes were estimated via GLM in

atlab. In addition to nuisance regressors (see previous section), the

ask GLM included two regressors modeling blocks for each task as box-

ars convolved with the canonical hemodynamic response function (us-

ng the ‘spm_hrf’ function from the SPM toolbox). GLMs were fit to the

egionwise and voxelwise timeseries data separately, and the resulting

eta amplitude estimates were used in all analyses involving fMRI task

ctivations. 
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Fig. 2. Flowchart depicting full analysis pipeline. Relevant Results section numbers are also provided. Note that generating predicted activations via the main 

activity flow mapping procedure is the basis for the majority of presented analyses. “regs ”= regressors; “ML ”= machine learning; “pred ”= predicted; “RT = reaction 

time ”; “alt. ”= alternative. 
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1 Note that the final restFC matrix for each subject was computed after con- 

catenating timeseries across both resting-state runs. This step is non-circular, 

given that the optimization across sessions was performed as a preliminary step 

to maximize restFC stability for each subject, rather than to directly optimize 

any analyses that we report inferential statistics for (e.g. the strength of the 
.5. Resting-state functional connectivity estimation 

The residual timeseries from the rest fMRI GLM were used to es-

imate restFC. Fig. 3 b illustrates the approach, which involves an opti-

ized form of multiple linear regression with principal component anal-

sis (PCA) dimensionality reduction. Multiple linear regression has been

sed for activity flow mapping previously ( Cole et al., 2016 ), with a pri-

ary benefit over alternative FC estimation methods being the removal

f indirect connections. For example, an underlying ground truth FC pat-

ern with connectivity between regions A-B-C would incorrectly yield

onnections between A-C if using Pearson correlation, but not multiple

inear regression. 

The optimization of multiple linear regression FC was performed for

ach individual subject, with the goal of maximizing the inter-session

tability of restFC, and hence prevent overfitting to noise. The latter

ay arise from multiple linear regression using the maximum number

f principal components permitted by the data, given that some com-

onents will reflect noise rather than neural signal. Our optimization

pproach varied the number of principal components included in the

egression in a cross-validation scheme that maximised the similarity of

he restFC pattern across the two resting-state runs for each subject. 

Specifically, for a ‘target’ brain region j (see Fig. 3 b), a PCA projec-

ion was performed for all ‘source’ regions i →n excluding that target

i.e. spatial PCA on an input matrix where timepoints = observations and

ource regions = variables). The number of principal component scores

ncomps) retained after this step was iteratively varied from 1 to the

aximum permitted (i.e. 164 timepoints per rest run minus 1 = 163

ax ncomps). The retained PCA scores were then used in a multiple

inear regression predicting the target j timeseries, with the resulting

a

oefficients multiplied by the PCA loadings to obtain betas capturing

esting-state connectivity between region j and all other regions i (pca 𝛽ij 

n Fig. 3 b). This process was repeated for all target regions j to populate

he (asymmetric) region x region restFC matrix for each rest run. The

imilarity between the run 1 and run 2 restFC matrices was finally cal-

ulated as the Pearson correlation between all off-diagonal matrix ele-

ents, with this entire process repeated on each ncomps cross-validation

oop. The optimized ncomps value was chosen as that yielding the maxi-

um FC similarity between rest runs, whilst also accounting for greater

han 50% of the variance explained in the source region PCA (averaged

cross all PCAs performed for each target region, for each optimiza-

ion loop). This PCA variance explained constraint served as a hyper-

arameter ensuring that FC stability was maximized without excluding

ignal components accounting for meaningful variance. Note that we

id not explore any other values for this hyperparameter to reduce the

hance of overfitting to noise in the data. Hence, each subject had a dif-

erent optimized ncomps value (mean ncomps across subjects = 10.26,

td = 6.88; mean restFC similarity = 0.58, std = 0.09; mean source PCA

ariance explained = 63.90%, std = 10.85). This optimized ncomps value

as entered when computing the final restFC estimates for each target

egion for that individual subject, with the resulting restFC matrix used

or further analyses. 1 
ctivity flow mapping predictions). 
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Fig. 3. Task design, restFC estimation and activity flow mapping implementation. a) Design schematic for the two fMRI tasks: semantic animacy and color Stroop. 

See Methods for a detailed description. Example trials are depicted for each task, with the hand symbol denoting the correct response. ‘ITI jitter’ = intertrial interval 

jitter, which ranged from 1 to 9 s in increments of 2 s. b) Approach to estimating restFC for each subject using an ‘optimized’ form of multiple linear regression with 

PCA dimensionality reduction. After extraction of BOLD rest timeseries from functional regions-of-interest (panel i, color-coded according to network affiliations 

from the Power et al., 2011 ), restFC was estimated for each subject via a regression model predicting target j region timeseries from the principal components of 

the remaining source i region timeseries (panel ii). The stability (i.e. matrix similarity) of the restFC solutions across the 2 runs was optimized for each subject via a 

cross-validation scheme that is described in Method Section 2.5 . ‘ncomps’ = the number of principal components from the PCA of the source i timeseries included in 

the regression model predicting j. This is the term that is varied as part of the restFC optimization. c) Practical implementation of activity flow mapping approach. 

Note that the restFC term used to generate the activity prediction for a given region/voxel j is a single row from that at-risk AD subject’s restFC matrix (color-coded in 

the Figure according to the Power network affiliations). ‘subject RFX’ = quantification of prediction accuracy via a subject-level random effects approach (see Methods 

for details). 
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2 Note that applying this PCA regression FC approach at the voxel scale 

was computationally intensive: 32424 gray matter voxels ∗ 2 rest runs ∗ 163 

PCA ncomps = 10570224 regressions for the initial optimization process; fol- 

lowed by 32424 gray matter voxels ∗ 1 concatenated rest run ∗ 1 optimal PCA 

ncomps = 32424 regressions to estimate the final FC matrix; applied to each 

subject separately. The procedure therefore required parallel computation of 
A separate restFC optimization was performed for the voxelwise

nalyses following an almost identical approach, wherein target vox-

ls j were predicted by the PCA projection of source voxels i. The only

odifications were the exclusion of spatially proximal voxels from the

ource voxel set (i) i.e. voxels from the same functional region as the

arget voxel and all voxels within 9 mm of that functional region were

xcluded. Functional region affiliations were identified from the Gor-

on functional atlas ( Gordon et al., 2016 ), as this parcellation provides

egional affiliations for every gray matter voxel in the brain, unlike the

ower functional atlas which only provides affiliations for 10 mm diam-

ter spheres. This exclusion step reduced the inflation of activity flow

i

apping predictions by spatial autocorrelation of the fMRI BOLD re-

ponse. 2 
ndividual subjects using a high performance computing cluster. 
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.6. Machine learning classifications using restFC and task activation 

eatures 

We trained multivariate machine learning classifiers to distinguish

etween healthy and at-risk subjects, separately on the basis of re-

ional restFC and regional task activation features. We employed a

inimum-distance classification approach, which is related to repre-

entational similarity analysis ( Kriegeskorte et al., 2008 ; Mur et al.,

009 ; Diedrichsen and Kriegeskorte, 2017 ; Hebart and Baker, 2018 ;

pronk et al., 2018 ). To increase the sample size for classifier training,

e concatenated at-risk subjects across both APOE and amyloid segre-

ation types, yielding a combined at-risk group size of 40. Given that the

ealthy group was larger ( n = 61), we selected a random subset of 40

ubjects from the healthy group to ensure that training was performed

n balanced group sizes (as recommended e.g. in Poldrack et al., 2019 ).

o probe the robustness of the classification results, we employed two

istinct approaches to cross-validation: a k-folds approach (90% of sub-

ects assigned to training and 10% to testing over 10 folds, with each test

old containing equal numbers of healthy/at-risk subjects uniquely as-

igned to each fold) and a leave-two-subjects-out approach (two unique

ubjects assigned to testing on each loop, one from each healthy/at-risk

roup to ensure perfectly balanced group sizes during training, as recom-

ended e.g. in Poldrack et al., 2019 ). These cross-validation approaches

ielded an identical pattern of classification results, highlighting robust-

ess of the between-group differences (see Results). 

Features for the restFC classification were the off-diagonal elements

rom each subject’s restFC matrix (264 × 264 regionwise connections),

s estimated via the optimized regression approach described above.

eatures were first z-scored within subjects. Given the high dimension-

lity of restFC (69,432 connections), we performed a feature selection

tep at the start of each training/testing loop to remove outlier connec-

ions (i.e. features contributing noise to the classification of AD group

tatus; Thung et al., 2018 ). Consistent with statistical outlier identifi-

ation approaches, noisy connections were identified from the z-scored

tandard deviations of each connection across training set subjects (i.e.

onnections with z-score standard deviation > 4.5 were removed). The

eld-out test subjects were excluded from this step to prevent circu-

arity. Note that the pattern of classification results was highly similar

hen varying this z-score threshold hyperparameter at > 4 or > 5. After

eature selection, at-risk and healthy group restFC templates were com-

uted by averaging features for each group separately (again, excluding

he held-out test subjects). Pearson correlation was used as a distance

etric to assess the similarity between the test subjects and both tem-

lates, with binary classification decisions set by comparing whether the

est subjects’ restFC was more similar to the unhealthy group (yielding

n ‘unhealthy’ classification) or healthy group (‘healthy’ classification)

emplate. Decisions were averaged across test subjects to estimate clas-

ification accuracy. 

The approach to the machine learning classification using task acti-

ations was almost identical to the restFC classification. Given the low

imensionality of the regional activations, we used all 264 activation

eatures without performing feature selection. Separate classifications

ere performed for the two fMRI tasks, as well as after averaging acti-

ations across the two tasks for each subject to promote ‘task general’

ctivation features. 

In all cases, significance of the classification accuracies was assessed

y a permutation testing approach, wherein the observed accuracy for

 given classifier was compared to a permuted null distribution of

lassification accuracies generated from scrambled group labels (over

 = 1000). P values were generated as the proportion of permuted accu-

acies that exceeded the observed ones (alpha = 0.05). This permutation

esting approach ensured that significantly above-chance classification

erformance was not driven by random noise in the sample, increasing

onfidence that the groups meaningfully differed in terms of their restFC

nd activation patterns. Note that the pattern of classification accuracies

as identical when using binomial tests against 50% chance. 
.7. Activity flow mapping approach 

Fig. 1 b provides an abstract depiction of our activity flow mapping

pproach that predicted task activations in at-risk AD subjects. Fig. 3 c

rovides a more practical guide to implementing the procedure, which

an also be formalized as a matrix equation: 

 𝑗 = 

∑

𝑖 ≠𝑗∈𝑉 
𝐴 𝑖 𝐹 𝑖𝑗 

here i and j index source (predictor) and target (to-be-predicted) re-

ions respectively, P j is the predicted task activation for an at-risk sub-

ect at a target j, A i is the healthy group activation for the same task (the

verage over GLM betas estimated for the healthy subjects) at a source

 , and F ij is the restFC between i and j . Hence, for an at-risk subject, task

ctivations in target regions j were predicted by the dot product of two

ectors (both of length n regions - 1): the healthy group activation in

he sources i (which excludes j ) and the at-risk subject’s restFC between

 and i . To clarify, the F ij vector is taken from the subject’s full restFC

atrix estimated via the PCA multiple regression approach (described

n Section 2.5 ), which excludes self-connections on the diagonal and

s oriented appropriately to capture the influence of sources i predict-

ng the resting-state timeseries of the target j (rather than vice versa,

iven the asymmetry of the regression-based restFC matrix). The restFC

stimates thus weight the ability for activity to flow between regions,

s indicated by the variable width of the red lines in Fig. 1 b. Iterating

hrough all target brain regions populated a predicted task activation

ector for each at-risk AD subject (see Fig. 3 c). The accuracy of the

ctivity flow predictions was then assessed by computing the overlap

Pearson correlation) between the predicted task activation vector and

he actual activation vector. This was done both after averaging pre-

icted and actual activations across subjects (group-level overlap) and

or each subject’s individual vectors (subject-level overlap). 

Statistical significance of the prediction accuracy was assessed in

oth parametric and non-parametric fashion. For parametric statistics,

he significance of the group-level overlap was indexed by the p value

ccompanying the Pearson correlation. The subject-level significance

as assessed in a random effects approach, with the overlap r values

or each subject transformed to Fisher-z values and submitted to a one-

ample t -test against 0. We also conducted non-parametric permutation

ests to: i) demonstrate the importance of region-to-region correspon-

ence between the healthy group activation and at-risk subject restFC

erms to the prediction accuracy, and ii) deal with any violation of the

ndependence assumption in the parametric statistics. The latter is a pos-

ibility given that each region’s activation prediction is made on the ba-

is of dot product operations between task activation and restFC terms,

hich involve overlapping regions that could introduce dependency.

ence for 1000 permutations, the group healthy activation term and

he rows of each at-risk subject’s restFC matrix were shuffled. Activity

ow predictions were then computed from the dot product of these shuf-

ed terms as described above, ultimately generating permuted group-

evel and subject-level overlap r values. Significance was assessed by

alculating the proportion of permuted r values that were higher than

he observed values (group- and subject-level), at an alpha threshold of

.05. 

Activity flow mapping was applied separately for each task and at-

isk AD group segregation type (APOE and amyloid; see Table 1 ). The

rocedure was virtually identical for both the regionwise and voxelwise

nalyses (i.e. replace ‘region’ with ‘voxel’ in the matrix equation above).

or the voxelwise analyses, accompanying the exclusion of nearby vox-

ls from the restFC estimation for a given voxel (see Section 2.5 ), we

lso excluded the same set of source voxels from the group healthy ac-

ivation vector when computing the activity flow prediction for that

arget voxel. Combined with use of non-Gaussian smoothing, this step

revented inflation of activity flow predictions by fMRI BOLD spatial

utocorrelation amongst proximal voxels. 
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We also applied a ‘two-cycle’ variant of this general approach,

herein the predicted at-risk task activations obtained from the stan-

ard ‘one-cycle’ approach described above were multiplied by subjects’

estFC a second time (see Supplementary Information section 1.4 and

igure S3). This was theoretically motivated to enhance the ability for

ctivity flow mapping to transform the healthy activation state to an

t-risk AD (unhealthy) activation state (see Fig. 1 a), and hence improve

he prediction accuracy. 

To clarify, the task activation term for this activity flow model is

aken from the healthy group, whereas the restFC term is taken from

ach to-be-predicted at-risk AD subject (see Fig. 1 b and Fig. 3 c). This

epresents a modification to the original activity flow mapping approach

 Cole et al., 2016 ), wherein both activation and restFC terms were taken

rom the to-be-predicted subject. This modification permits application

f the procedure in cases where task fMRI data is unavailable or difficult

o acquire for a given subject, which raises clinical utility. The fact that

he activation and FC terms are derived from separate subjects (as well

s separate task/rest sessions) also avoids any direct correspondence of

he first-order activation and second-order FC moments. 

.8. Activity flow prediction of dysfunctional activations: regressing-out 

pproach 

The previous section describes our approach to using activity flow

apping to predict task activations in at-risk subjects. We also extended

he approach to more directly model AD dysfunction i.e. task activation

ifferences between the at-risk and healthy groups. To achieve this, we

sed a regression approach in which we took the activity flow-predicted

ctivations for each at-risk subject, and regressed out the group healthy

ask activation from each one (see flowchart Fig. 2 , and commented

nalysis code provided via Section 2.11 ). After this operation, the resid-

al activation vector reflects differences between the healthy group and

hat at-risk subject (scaled by the constant in the regression). We also

egressed out the group healthy activation from the actual activation

or the same at-risk subject. This enabled comparison (via Pearson cor-

elation) of the overlap between the predicted and actual dysfunctional

ctivation vectors. Statistical significance of the overlap was assessed

y both parametric and non-parametric (permutation) tests, applied to

he group-level and subject-level overlap. This approach was repeated

or both the regionwise and voxelwise data (again, excluding nearby

oxels from the activation and restFC terms that generate the voxelwise

redictions). 

The permutation test approach was similar to that described in the

revious section: scrambled group healthy activation and subject at-risk

estFC vectors were generated for each to-be-predicted at-risk subject.

ctivity flow was then computed from these terms, with the same un-

crambled group healthy activation vector regressed out of the predicted

nd actual activations prior to computing their overlap at both the group

evel (after averaging activations across subjects) and the subject level

for each individual subject). This generated a permuted distribution of

ctivity flow mapping prediction overlap (over 1000 permutations), to

hich the observed group-/subject-level overlap was compared at an

lpha threshold of 0.05. 

.9. Activity flow prediction of dysfunctional activations: contrast image 

pproach 

As an alternative method of predicting dysfunctional task activations

to the regressing-out approach described in Section 2.8 ), we used ac-

ivity flow mapping to generate a predicted between-group contrast im-

ge that captured activation differences between the at-risk and healthy

roups (see flowchart Fig. 2 ). We focused on the voxelwise data for this

nalysis as this spatial scale provides the most visually interpretable re-

ults, and as this is typically the scale at which between-group contrast

mages are analyzed in fMRI research. The actual healthy task activa-

ions and the predicted at-risk activations were firstly z-scored (within
ubjects) to more clearly recover the activation patterns. The average

f the healthy activations was then subtracted from the average of the

redicted at-risk activations. The resulting ‘predicted contrast image’ di-

ectly indexed how activations at each brain voxel differed in the at-risk

elative to the healthy group. This predicted contrast image was corre-

ated with the ‘actual contrast image’ (the averaged actual at-risk acti-

ation minus the averaged healthy activation) to assess how accurately

ask activation dysfunction was captured. 

To correct for any inflation of the contrast image overlap induced by

ubtracting the same vector (healthy group activation) from two other

ectors (predicted and actual at-risk group activations) that are subse-

uently correlated, we used a non-parametric permutation approach to

enerate a more appropriate null than overlap r = 0. Over 1000 per-

utations, we generated activity flow-predicted task activations based

n scrambled group-averaged healthy activation and scrambled at-risk

ubject restFC terms (as per the permutation tests described in previous

ections). From the resulting scrambled predicted group at-risk activa-

ion, we subtracted the unscrambled group healthy activation. This per-

uted predicted contrast image was correlated with the observed (un-

crambled) actual contrast image. Significance of the observed overlap

alues was assessed against this permuted null distribution at an alpha

hreshold of 0.05. 

We also conducted a thresholded version of the voxelwise contrast

mage analyses. A 2-sample t -test contrasting the actual at-risk activa-

ions versus the actual healthy activations was used to identify the most

ighly dysfunctional voxels in the actual data. A ‘predicted’ version of

his 2-sample t -test was also computed by contrasting predicted at-risk

ctivations versus the healthy activations. Prediction overlap was as-

essed by correlating the actual at-risk t-statistic vector with the pre-

icted t-statistic vector, after confining to the most highly dysfunc-

ional voxels in the actual data (identified by thresholding the actual

-statistic vector at p < .001 uncorrected). Significance was assessed by a

on-parametric permutation approach, wherein a null overlap distribu-

ion was generated by randomly selecting a matched number of voxels

rom the predicted t-statistic vector and correlating with the (unscram-

led) actual thresholded t-statistic vector over 1000 iterations. Signif-

cance of the observed overlap r values was assessed against this null

istribution at an alpha level of 0.05. 

.10. Using the activity flow-predicted activations to model individual 

ifferences in task behavior 

We assessed whether task activations predicted by the activity flow

pproach were able to accurately model individual differences in task

ehavior (see flowchart Figs. 2 and 4 ). To increase the sample size

or this analysis (as recommended for individual differences research,

rydges, 2019 ), we used activity flow mapping to generate predicted

ask activations for the healthy subjects in analogous fashion to the pro-

edure for at-risk subjects. Specifically, a group activation template was

reated by averaging the healthy group excluding the to-be-predicted

ealthy subject, and the dot product was computed between this activa-

ion template and that healthy subject’s restFC. The resulting predicted

ealthy task activations were concatenated with the predicted at-risk

ask activations to increase the sample size to 101. 

We then trained a regression model to predict task behavior from the

ctivity flow-predicted activations (see Fig. 4 ). We used cross-task reac-

ion time as the behavioral outcome measure for these analyses (see

able 1 for cross-task RT and accuracy information). We began by z-

coring RT across trials for each subject, as recommended previously to

ccount for each subject’s characteristic processing speed ( Faust et al.,

999 ). These z-scored RT values were then averaged across all trials

correct and incorrect) for each subject, for each task separately. To

ocus the model on prediction of cross-task RT, the first principal com-

onent across RT for the two tasks was estimated for a given subject and

his was used as their final behavioral outcome measure. 
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Fig. 4. Procedure for modeling individual differences in task behavior (reaction time, RT). Note that this approach was applied for the model of primary interest 

that used activity flow-predicted task activations as input features, as well as for the alternative models it was compared to (i.e. the actual activation features model, 

and the ‘raw’ restFC features model; see Methods 2.10 for details). “obs ”= observations, “pred ”= predicted. 
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After these preprocessing steps, leave-one-subject-out cross-

alidation was used for model training. Given that the number of

eatures (264 regional activations) exceeded the number of subjects

100 in each training set), we first performed feature dimensionality

eduction by averaging the regional activations according to each

egion’s network affiliation (determined by the Power functional atlas,

ower et al., 2011 ), yielding 13 network-averaged activation features

or each task, for each subject. These dimensionality reduction steps

ircumvented rank deficiency problems that would arise if the number

f features was greater than the number of subjects (i.e. observations).

he first principal component across the two task activation vectors

as taken for each subject, meaning that cross-task RT (1st component

cross animacy and stroop tasks, PCA estimated across all 101 subjects)

as predicted from cross-task predicted activations (1st component

cross animacy and Stroop task activations, PCA estimated separately

or each subject). 
Within each training loop, the activation features and behavioral RT

utcomes were z-scored using the means and standard deviations from

he training set (to prevent circularity). The RT scores (Y) were then

egressed onto the activation features (X) in the training set, with the

eta coefficients of the resulting model used to predict the held-out test

ubject’s RT. Behavioral prediction accuracy was finally quantified as

he Pearson correlation between the predicted and actual RT scores,

ith significance assessed via the accompanying p values (alpha = 0.05

ncorrected). To demonstrate robustness of the approach, separate mod-

ls were trained across all ways of identifying at-risk subjects: amy-

oid, APOE, and the concatenation of at-risk subjects across amyloid

nd APOE. 

For comparison, the above regression approach was repeated to

enerate behavioral predictions using i) the actual task activations as

eatures (network-averaged, as with the predicted activations), and ii)

raw’ restFC features that had not been passed through the activity
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4 Note that the lower subject-level prediction accuracy for the Stroop versus 
ow model to simulate task activations. For the latter, an analogous

eature dimensionality reduction approach to that used for the pre-

icted/actual activations was devised, wherein restFC was averaged

cross all connections for each individual network. This graph theoretic

easure has previously been described as ‘global brain connectivity’

GBC; Cole et al., 2012 ) or ‘unthresholded weighted degree centrality’

 Rubinov and Sporns, 2011 ). In this case, GBC was averaged across re-

ions within each network to yield 13 restFC features in total (identical

o the number of features in the activation-based behavior models). 

.11. Data and code availability 

Analysis code used in the present report is available from the fol-

owing public repository: https://github.com/ColeLab/AgingActflow _

elease . This includes the Matlab functions used for estimation of

ultiple regression FC (with PCA optimization, Section 2.5 ), predic-

ion of task activations via activity flow mapping ( Section 2.7 ; which

lso optionally applies the ‘regressing-out’ dysfunction prediction ap-

roach described in Section 2.8 ), and modeling of individual differ-

nces in behavior ( Section 2.10 ). Requests for neuroimaging and clin-

cal data should be submitted to the Knight ADRC (as described here

ttps://knightadrc.wustl.edu/Research/ResourceRequest.htm ). 

. Results 

.1. Evidence of at-risk Alzheimer’s-related dysfunction: behavioral 

To reiterate our sample’s screening criteria, none of the included

ubjects met clinical criteria for full Alzheimer’s-related behavioral im-

airment: Mini Mental State Exam (MMSE) scores were greater than

4, and Clinical Dementia Ratings (CDR) were 0 (negative dementia

iagnosis). However, analysis of the MMSE scores revealed that the at-

isk group was behaviorally impaired compared to the healthy group,

ven in this sub-clinical range (see Table 1 for MMSE means and stan-

ard deviations across groups). MMSE scores were significantly lower

or the at-risk group across both APOE (2-sample t -test healthy > at-

isk: t(99) = 2.20, p = .030) and amyloid (t(99) = 2.32, p = .022) segrega-

ion types. 3 Overall, these results support the presence of sub-clinical

lzheimer’s-related behavioral dysfunction in the at-risk AD subjects,

hich activity flow mapping attempted to capture. 

.2. Evidence of at-risk Alzheimer’s-related dysfunction: restFC and task 

ctivation classifications 

To further demonstrate dysfunction in the at-risk versus healthy

roup, we trained multivariate machine learning classifiers to discrimi-

ate between the two groups separately on the basis of regional restFC

nd regional task activation features. We used a minimum-distance clas-

ifier with two distinct forms of cross-validation to demonstrate robust-

ess (see Methods; Poldrack et al., 2019 ). To increase the sample size

or classifier training, these analyses collapsed across at-risk subjects

dentified in either APOE or amyloid segregation types (yielding at-risk

 = 40). 

The restFC classifier achieved significantly above-chance accuracy

n discriminating between at-risk and healthy groups via k-folds cross-

alidation (60% mean accuracy; 62.5% sensitivity in classifying ‘at-

isk’, 57.5% specificity in classifying ‘healthy’; p = .021 via permuta-

ion test, null classification mean = 50.1%). Classifiers trained via k-

olds to discriminate based on task activation features yielded above-

hance accuracy for the animacy task (68.8% accuracy; 72.5% sen-

itivity, 65% specificity; p < .001, null mean = 50%) but not the Stroop
3 Note that these between-group MMSE differences were only marginally sig- 

ificant when using the more conservative Wilcoxon ranksum test: z = 1.68, 

 = .093 (collapsed across segregation types). 

t

t

t

s

t

ask (53.8% accuracy; 60% sensitivity, 47.5% specificity; p = .253, null

ean = 49.9%). A separate classifier was trained to discriminate on the

asis of ‘task general’ activation features identified by averaging across

he two tasks for each subject, yielding significantly above-chance ac-

uracy (62.5% accuracy; 65% sensitivity, 60% specificity; p = .005, null

ean = 50.1%). Note that the pattern of performance was identical when

sing a distinct leave-two-subjects-out cross-validation approach: restFC

lassification mean accuracy = 61.3%, p = .016; animacy task activa-

ion accuracy = 66.3%, p < .001; Stroop task activation accuracy = 56.3%,

 = .097; task general activation accuracy = 66.3%, p = .002. 

Overall, the classification results revealed reliable differences be-

ween the at-risk and healthy groups in terms of their restFC and task

ctivations. Taken in isolation, these findings help to address the previ-

usly highlighted dearth of machine learning classification/prediction

pproaches applied to at-risk Alzheimer’s samples versus more com-

only studied mild cognitive impairment (MCI) samples ( Rathore et al.,

017 ; Liu et al., 2018 ). Our results demonstrate statistically reliable

etween-group classification even at this earlier stage of AD. Considered

ith the between-group MMSE differences reported above, this validates

he presence of meaningful dysfunction in the at-risk AD group. This sup-

orts the ensuing analyses of primary interest, in which we apply our

heory-driven activity flow mapping approach to model this AD-related

ysfunction. 

.3. Activity flow mapping accurately predicts task activation patterns in 

eld-out at-risk AD subjects 

Activity flow mapping was firstly applied to predict at-risk AD task

ctivations at the region level ( Fig. 5 a). For the APOE segregation, the

roup-level predicted-to-actual activation overlap was significant for

oth the animacy task (Pearson r = 0.68, p < .00001) and the Stroop

ask ( r = 0.70, p < .00001). Significance was maintained when com-

uting the overlap at the subject level (treating subjects as a ran-

om effect, see Methods) for both the animacy task (mean r = 0.24,

(32) = 7.80, p < .00001) and the Stroop task (mean r = 0.18, t(32) = 6.84,

 < .00001) . 4 Visual inspection of the commonalities across the pre-

icted and actual regional vectors (see Fig. 5 a) highlights the cross-

ask recovery of the canonical task-negative deactivation of the default

ode network (DMN) and task-positive activation of the cognitive con-

rol networks (CCNs; including the frontoparietal control network, FPN,

ingulo-opercular network, CON, dorsal and ventral attention networks,

AN and VAN). 

Non-parametric permutation tests were also conducted to demon-

trate the importance of region-to-region correspondence between the

ctivation and restFC terms to the activity flow predictions, and deal

ith any violation of the independence assumption in the paramet-

ic tests (see Methods). The pattern of results obtained with this non-

arametric approach was identical to that obtained with parametric

ethods: for the APOE segregation, prediction overlap was significant

t both the group level ( p < .001 for both tasks) and the subject level

 p < .001 for both tasks). 

Activity flow mapping was extended to predict task activations at

very voxel in the brain ( Fig. 5 b). To prevent circularity arising from

patial autocorrelation of fMRI data, voxels within the same functional

egion as the to-be-predicted region were excluded as well as all voxels

ithin a 9 mm radius of that region (see Methods). The overlap between

he group-averaged predicted and actual voxelwise activations was sig-

ificant for both tasks: animacy r = 0.46, p < .00001; Stroop r = 0.47,
he animacy task was found to be statistically significant (via paired ttest of 

he fisher-transformed r values): t(32) = 2.39, p = .023. This is consistent with 

he Stroop activations being less related to AD dysfunction in this cohort, as 

uggested by the lower accuracy obtained when classifying group status from 

he actual Stroop activations (see section 3.2 ). 

https://github.com/ColeLab/AgingActflow_release
https://knightadrc.wustl.edu/Research/ResourceRequest.htm
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Fig. 5. Activity flow mapping results for the prediction of task activations in at-risk AD subjects, as identified by the APOE segregation. a) Group-averaged predicted 

and actual task activation vectors for the regionwise analysis, and their overlap (Pearson r). Network affiliations for each region from the Power et al. (2011) atlas are 

provided in the color-coded bar to the left: MOT = motor network, CON = cingulo-opercular network, AUD = auditory network, DMN = default mode network, VIS = visual 

network, FPN = fronto-parietal control network, SAL = salience network, SUB = subcortical network, VAN = ventral attention network, DAN = dorsal attention network. 

b) Group-averaged predicted and actual task activation brain maps for the voxelwise analysis, and their overlap (Pearson r). All regionwise and voxelwise activations 

were z-scored for visualization purposes. 
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5 Note that this corresponds to a random effects (subject RFX) approach 

to significance assessment that takes subject variance into account. The same 

approach was employed for the conceptually similar analyses detailed in 

Sections 3.5 and 3.6 . 
 < .00001. Significant prediction accuracy was maintained when com-

uting the voxelwise overlap at the subject level (as per the region-

ise analyses above): animacy r = 0.13, t(32) = 6.20, p < .00001; Stroop

 = 0.09, t(32) = 4.76, p < .0001. We also conducted permutation tests for

he voxelwise analyses following the same rationale as the regionwise

esults. This yielded an identical pattern as the parametric voxelwise re-

ults: prediction overlap was significant at both the group level ( p < .001

or both tasks) and the subject level ( p < .001 for both tasks). Visual in-

pection of the common activation patterns across the predicted and ac-

ual voxelwise brainmaps (see Fig. 5 b) again demonstrates cross-task re-

overy of canonical task negative (DMN regions e.g. bilateral precuneus,

osterior cingulate, angular gyrus and ventromedial prefrontal cortex)

nd task positive (CCN regions e.g. bilateral anterior cingulate, supe-

ior frontal gyrus, lateral prefrontal cortex and inferior parietal cortex)

ctivations by the activity flow mapping procedure. 

Similarly high prediction accuracy was obtained when activity flow

as applied to at-risk AD subjects identified by the amyloid segregation

see Supplementary Information section 1.1). In the Supplementary In-

ormation (see section 1.2), we also report a “pairwise network ” vari-

tion of the approach that generated task activation predictions from

pecific networks one at a time, which highlighted prominent involve-

ent of DMN and FPN networks in driving activity flow in these at-risk

ubjects. Overall, the results demonstrate accurate prediction of task

ctivations in held-out at-risk subjects by activity flow mapping, as esti-

ated at the group and subject level, at regionwise and voxelwise spatial

cales, across two distinct cognitive tasks and across two distinct ways

f identifying at-risk AD subjects. 

.4. Activity flow over at-risk AD restFC transforms a healthy aged 

ctivation state into an unhealthy one 

We next sought more direct evidence that activity flow over an at-

isk pattern of restFC transforms a healthy activation state into an at-risk

ne (see Fig. 1 a). To clarify, the extent to which the activity flow model

akes accurate predictions of at-risk AD activations is determined by

ow successfully the model transforms the healthy activation template

via at-risk restFC) into the actual at-risk activation (see Fig. 6 a). We

ormally tested this transformation hypothesis by comparing the sim-
larity between each at-risk subject’s predicted activation with i) the

roup healthy activation versus ii) the actual group at-risk activation.

f the similarity of the predicted-to-actual at-risk activation was reliably

reater than the similarity of the healthy-to-actual at-risk activation,

his would support a mechanistic link between altered restFC and the

mergence of dysfunctional task activations. The actual group at-risk

ctivations were averaged after excluding the to-be-compared at-risk

ubject. The analysis yielded a pair of Pearson r values for each subject

at-risk task similarity r and healthy task similarity r, averaged across the

wo tasks), which were Fisher-transformed and contrasted via a paired-

ample t -test. 5 

As expected, the predicted at-risk activations were significantly more

imilar to the actual at-risk group activation than to the actual healthy

roup activation ( Fig. 6 b displays the Pearson r difference values). This

eld for both the APOE segregation (actual at-risk > actual healthy sim-

larity, paired-sample t(32) = 4.74, p < .001) and the amyloid segregation

t(19) = 2.41, p = .026). These results are noteworthy given that the group

ealthy activation vector is the only activation term the model has ac-

ess to when predicting at-risk AD subject activations (see Fig. 1 b). That

he activity flow-predicted activations are actually more similar to the

ctual at-risk group activation hence provides compelling evidence of

he power of restFC alone in transforming healthy into unhealthy activa-

ion states. In the Supplementary Information (section 1.4), we demon-

trate that this transformation can be further enhanced by implementing

wo cycles of multiplying the healthy activation template with the at-

isk subject’s restFC. 

.5. Activity flow mapping activation predictions are task-specific 

To further validate the accuracy of activity flow mapping, we inter-

ogated whether the predicted activations captured features specific to

he to-be-predicted task. This property is particularly desirable when ap-

lied in clinical contexts, as it enables prediction of brain activations in
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Fig. 6. Activity flow mapping recovers salient task activation properties in at-risk AD subjects. a) Schematic demonstration of the transformation analysis: operation 

with at-risk subject restFC transforms a healthy task activation into an at-risk (unhealthy) one. This is formalized as the at-risk predictions having greater similarity 

with the actual at-risk group template versus the healthy group template. Panels b-d follow a similar approach of computing the Pearson r similarity between the 

predicted at-risk subject activations with two activation templates (denoted for each analysis by the panel legends), followed by group-level contrasts of the resulting 

two similarity values (after Fisher-z transform) via paired t -test. All plots represent the mean + /- the standard error of the paired similarity r difference values (the 

box) and the minimum/maximum (the whisker), with individual data points overlaid (r difference values for each at-risk subject). All panels depict results across 

the APOE (left plot) and amyloid (right plot) segregation types. Difference r values with boxes above zero suggest recovery of effects in the anticipated direction for 

each panel. P-values reflect paired t-tests contrasting the similarity r values across conditions (equivalent to one-sample t-tests contrasting the paired difference r 

values against 0). b) Activity flow mapping transforms healthy into at-risk activations: the similarity between the predicted at-risk activations for each subject was 

compared with group-averaged templates of the actual at-risk and actual healthy activations. c) Activity flow mapping captures activation patterns that are specific 

to a given task. Similarity of predicted at-risk activations to actual at-risk activations from the same task was compared to similarity with the actual at-risk activation 

from the other task (both group templates). d) Activity flow mapping captures activation patterns that are specific to a given subject. Similarity of the predicted 

activations for a given at-risk subject to the actual activations for that subject was contrasted with similarity to the actual activations for the other at-risk subjects 

(averaging the r values across these other subjects). 
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ifferent tasks designed to isolate different cognitive processes and asso-

iated impairment (rather than solely capturing task-general activation

atterns). 

For each at-risk AD subject, we compared the similarity (Pearson r)

f their predicted activations to i) the group actual at-risk activation for

he same task versus ii) the similarity to the group actual at-risk acti-

ation for the other task. To clarify, to conduct the analysis for the an-

macy task, we would compute the similarity of the predicted animacy

ctivation for an at-risk subject to the group-averaged actual at-risk an-

macy activation (same task), and compare this to the similarity to the

roup-averaged actual at-risk Stroop activation (other task). Both at-risk

roup activation templates (same task and other task) excluded the at-

isk subject from which the predicted activation is taken. This yielded

 pair of Pearson r values for each subject (same task similarity r and

ther task similarity r, each averaged across the two tasks), which were

isher-transformed and contrasted via paired-sample t -test. 

The results reveal that the activity flow-predicted at-risk subject ac-

ivations were significantly more similar to the actual at-risk group acti-
 s
ation for the same task than the other task ( Fig. 6 c displays the Pearson

 difference values). This held for both the APOE segregation (same >

ther task similarity, paired-sample t(32) = 5.80, p < .001) and the amy-

oid segregation (t(19) = 5.89, p < .001). 

.6. Activity flow mapping activation predictions are subject-specific 

As another demonstration of prediction accuracy and potential clini-

al utility, we sought evidence that the activity flow-predicted activation

or a given at-risk subject was more similar to i) the actual activation for

hat same subject versus ii) the activation of other at-risk subjects in the

ample. For each at-risk AD subject we compared the similarity between

heir predicted task activation and their actual task activation (same sub-

ect similarity) versus the similarity with the actual task activations of

ll other at-risk subjects (other subject similarity). The similarity r val-

es computed with the other subjects were averaged to yield one ‘other

ubject’ similarity r value, which was contrasted with the ‘same subject’

imilarity r value via paired t -test (after Fisher-z transform). 
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The results confirmed that the activity flow-predicted task activation

or a given at-risk subject was significantly more similar to their own ac-

ual activation pattern ( Fig. 6 d displays the Pearson r difference values):

POE segregation (same > other subject similarity, paired t(32) = 2.85,

 = .008), amyloid segregation (t(19) = 3.04, p = .007). This illustrates the

bility of the activity flow framework to capture individualized aspects

f at-risk AD task activation patterns. This again enhances the frame-

ork’s potential clinical utility, given considerable recent biomedical

esearch interest in modeling individual differences to develop person-

lized medicine interventions ( Matthews and Hampshire, 2016 ). Con-

istent with the mechanism proposed to underlie our framework, we

mployed a similar approach to demonstrate the particular utility of

ubject-specific restFC in generating accurate individualized task acti-

ation predictions (see Supplementary Information section 1.3). 

.7. Isolation of dysfunctional task activation predictions by regressing out 

ealthy activations 

Thus far, we have demonstrated high accuracy of activity flow map-

ing when used to predict task activations in at-risk AD subjects. This

rediction did not directly characterize how the activation patterns dif-

ered between at-risk and healthy subject groups. Demonstrating that

ctivity flow mapping is able to accurately capture such differences is

esirable for the aim of modeling dysfunction in AD (and other patholo-

ies). To achieve this, we regressed out the actual group healthy task

ctivation from both the predicted and actual task activations for each

t-risk subject (see Methods 2.8 and flowchart Fig. 2 ). The overlap com-

uted between the predicted and actual residual vectors hence indexed

he ability for activity flow to capture differences between the healthy

roup and that at-risk subject. 

For the APOE segregation, group overlap between predicted and ac-

ual dysfunctional activations was significant for both the animacy task

Pearson r = 0.35, p < .00001) and the Stroop task ( r = 0.32, p < .00001).

ignificant overlap was maintained when treating the subjects as a ran-

om effect, for both the animacy task (mean r = 0.13, p < .00001) and

he Stroop task (mean r = 0.07, p = .004). 6 As with the main activity

ow mapping results ( Section 3.3 ), we also assessed the significance of

he ‘dysfunction’ predictions via non-parametric permutation tests (see

ethods 2.8). This yielded an identical pattern of results to the para-

etric statistics: dysfunctional prediction overlap was significant at the

roup level ( p < .001 for both tasks) and the subject level ( p < .001 for the

nimacy task, p = .005 for the Stroop task). The pattern of results was

dentical for the amyloid segregation type (see Supplementary Informa-

ion section 1.1). 

We also predicted task activation dysfunction at every gray matter

oxel in the brain. The voxelwise overlap between predicted and ac-

ual dysfunctional activations was significant for both the animacy task

Pearson r = 0.29, p < .00001) and the Stroop task ( r = 0.18, p < .00001).

ignificant overlap was maintained when treating the subjects as a ran-

om effect for both the animacy task (mean r = 0.09, p < .00001) and

he Stroop task (mean r = 0.07, p < .001). The pattern of significance

as identical via non-parametric permutation tests (following the same

ationale as the regionwise analyses), for both the group-level ( p < .001

or both tasks) and subject-level overlap ( p < .001 for both tasks). Overall,

hese findings support the ability of activity flow mapping to capture ac-

ivation differences between the at-risk and healthy groups, suggesting

tility in modeling AD-related dysfunction. 
6 Note that the lower subject-level accuracy in predicting dysfunctional acti- 

ations for the Stroop versus the animacy task was found to be statistically sig- 

ificant (via paired ttest of the fisher-transformed r values): t(32) = 2.39, p = .023. 

xtending the significant cross-task differences in the main activity flow predic- 

ions (see footnote Section 3.3 ), this suggests the Stroop activations were less 

elated to AD dysfunction in this cohort, consistent with the lower accuracy 

btained when classifying group status from the actual Stroop activations (see 

ection 3.2 ). 
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.8. Prediction of between-group contrast images also captures task 

ctivation dysfunction 

The preceding section described our use of activity flow mapping to

redict at-risk AD task activations directly linked to clinical dysfunction.

s an alternative to the regressing-out approach, we generated between-

roup contrast images capturing voxelwise task activation differences

etween the at-risk and healthy subjects (see Methods 2.9 and flowchart

ig. 2 ). This was done both using the activity flow-predicted at-risk acti-

ations (predicted contrast image = group predicted at-risk minus group

ealthy) and the actual at-risk activations (actual contrast image = group

ctual at-risk minus group healthy). The predicted-to-actual contrast im-

ge overlap was quantified via Pearson correlation as before. A non-

arametric permutation approach was used to assess significance whilst

ontrolling for any inflation of the overlap correlation by the subtraction

f the group healthy activation (see Methods 2.9). 

For the APOE segregation, the overlap between the predicted and

ctual contrast images was r = 0.39 and r = 0.30 for the animacy and

troop tasks respectively (see Fig. 7 ). Both overlap correlations were sig-

ificant versus the permuted null ( p < .001 for both tasks). A thresholded

ersion of these analyses confined the predicted-to-actual contrast image

verlap to only those voxels that significantly differed in the actual con-

rast image map (via 2-sample t -test at p < .001 uncorrected, see Methods

.9 for details). This also yielded significant overlap: animacy r = 0.53,

 < .001 (via non-parametric permutation test, see Methods 2.9); Stroop

 = 0.67, p < .001. This demonstrates that activity flow mapping is able

o accurately predict the multivariate pattern amongst the most highly

ysfunctional voxelwise task activations in the at-risk AD subjects. Over-

ll, the generation of between-group contrast images via activity flow

apping raises another potentially fruitful clinical application by pro-

iding visually interpretable activation dysfunction brain maps. How-

ver, in the Supplementary Information we report only modest overlap

n peak dysfunctional loci identified across the actual and predicted im-

ges. This highlights a limitation in a univariate extension of our model

hat will need to be addressed by future refinements (see Supplementary

nformation section 1.5 and Figure S4 for more details). 

.9. Activity flow-predicted activations capture individual differences in 

ask behavior 

Thus far we have demonstrated the ability of the activity flow model

o accurately predict task activations and task activation dysfunction in

t-risk AD subjects. Critically, applying the model does not require in-

canner task performance from those individual subjects. We extended

he approach by using the activity flow-predicted task activations to

odel individual differences in behavior (i.e. task reaction time, RT;

ee Fig. 2 ). Linking imaging measures to behavior (and behavioral im-

airment) is increasingly recognized as integral to clinical biomarker

evelopment ( Rosenberg et al., 2016 ; Woo et al., 2017 ). 

We first adapted activity flow mapping to generate predicted acti-

ations for the healthy subjects (see Methods 2.10 for details), so as

o increase our sample size as recommended for individual differences

nalyses ( Brydges, 2019 ). This yielded accurate predictions of task acti-

ations in the healthy group, both for the APOE (animacy group overlap

 = 0.65, Stroop group r = 0.71, both p < .00001) and amyloid (animacy

roup r = 0.66, Stroop group r = 0.72, both p < .00001) segregations. 

After concatenating activity-flow predicted activations across the

ealthy and at-risk groups, we next trained regression models to pre-

ict cross-task behavioral RT from cross-task predicted activation fea-

ures (after averaging regional activations into networks; see Methods

ection 2.10 and Fig. 4 for details). The accuracy of the behavioral pre-

ictions was assessed by computing the overlap (Pearson r) between the

redicted and actual RT scores. Regression models trained on activity-

ow predicted activations were able to reliably model behavior and this

eld across different approaches to segregating at-risk subjects: amyloid

verlap r = 0.20 ( p = .041), APOE overlap r = 0.19 ( p = .055), concate-
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Fig. 7. Generation of between-group activa- 

tion contrast images via activity flow mapping. 

Predicted (left panel) and actual (right panel) 

contrast images for the animacy task (upper 

panel) and Stroop task (lower panel) are de- 

picted for the APOE segregation, along with 

the predicted-to-actual contrast image overlap 

(both r values p < .001 via permutation test, see 

Results for details). Activation differences were 

generated as group averaged predicted/actual 

at-risk AD minus group averaged healthy, and 

were z-scored for visualization purposes. 
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ated (amyloid or APOE) overlap r = 0.21 ( p = .038). The results using

he predicted activations are comparable (albeit numerically weaker)

o those obtained when using the actual activations as features in the

egression: actual activation overlap r = 0.31 ( p = .002). Notably, when

he regression approach was adapted to use the actual restFC informa-

ion as features (using a network-averaged GBC measure of restFC, see

ethods), no reliable prediction of behavioral RT was observed: restFC

verlap r = 0.05 ( p = .600). 

Overall, this demonstrates the utility of the activity flow approach

n reliably modeling individual differences in task behavior from sub-

ects’ predicted activations. Again, critically, this link to task behavior

as achieved without requiring the model to have access to the sub-

ects’ actual fMRI task activations (rather, only their restFC). This high-

ights an optimal use-case for applying the activity flow approach in

linical contexts: when actual task fMRI data was not collected for a

iven subject/s, yet modeling their activations on that task and how

hey relate to behavior (and associated cognitive deficits) is desired.

his raises clinical potential as the absence of fMRI data for a specific

ask (indeed, often any task) is a common occurrence in clinical datasets,

iven the need to minimize overall scan time to ensure participant com-

ort and lower costs. We demonstrate here that modeling of behavioral

erformance in such cases can be improved when using activity flow-

imulated activation features rather than the ‘raw’ restFC features. Note

hat even though behavioral prediction accuracy was qualitatively simi-

ar when using predicted or actual task activation features (in that both

urpassed statistical significance thresholds), future refinements of the

ctivity flow approach should target quantitative improvements to reach

he higher accuracy of the actual activation model (see Discussion for

uture directions for activity flow model refinement). 

. Discussion 

We report the first extension of the activity flow framework

 Cole et al., 2016 ) to a clinical context: modeling dysfunction in indi-
iduals at risk for Alzheimer’s disease. The framework was applied in

n elderly sample segregated into at-risk and healthy subgroups based

n established AD risk factors (presence of APOE 𝜀 4 or high PET amy-

oid). These group definitions were validated by demonstration of re-

iable group differences in behavior (MMSE) and reliable multivariate

achine learning classifications of group status based on restFC and

egional task activations. To model the emergence of this observed dys-

unction, activity flow mapping was used to predict activations in held-

ut at-risk subjects (and held-out brain regions/voxels) from their in-

ividual pattern of restFC altering a healthy task activation template.

his procedure accurately predicted at-risk AD activations across differ-

nt cognitive tasks, neural spatial scales, and at-risk segregation types,

llustrating its robustness. Follow-up analyses confirmed key mechanis-

ic properties of our framework: healthy activations were transformed

y the individual pattern of at-risk restFC alone, and this transformation

as improved by a second cycle (see Supplementary Information 1.4). In

upport of the framework’s clinical utility, activation predictions were

tatistically reliable at the individual level, and captured task-specific

nd subject-specific signatures. Activity flow mapping remained accu-

ate when predicting overtly dysfunctional activations (those that dif-

ered for at-risk versus healthy subjects), and was extended to reliably

odel individual differences in task behavior using the predicted task

ctivations. 

Our findings have three broad implications. Firstly, the success of

ctivity flow mapping provides empirical evidence for a mechanistic

ole of restFC in defining the pathways over which activity flows across

he brain and, therefore, pathways underlying activity dysfunction. Sec-

ndly, our findings highlight the potential of applying activity flow map-

ing to predict features of AD-related pathology. Thirdly, these results

rovide theoretical insights that can guide ongoing efforts to optimize

he use of restFC to predict/classify disease features more generally. 

The first implication relates to much needed insight into the cogni-

ive relevance of restFC, which has been questioned given the exper-

mentally unconstrained nature of rest ( Mill et al., 2017 ). A role for
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onnectivity in driving the emergence of task activations has long been

ormalized in computational models ( Hodgkin and Huxley, 1952 ), and

mpirically demonstrated by local circuit neurophysiology linking con-

ectivity to synaptic modulation of action potentials ( Laughlin and Se-

nowski, 2003 ; Fries, 2005 ). A similar role for synaptic connectivity in

eighting paths of information propagation across computational ‘lay-

rs’ has been a unifying property of neural network simulations of cog-

itive function ( McClelland and Rogers, 2003 ; Battaglia et al., 2012 ).

mportantly, the success of activity flow mapping suggests restFC as a

arge-scale analogue of such synaptic processes, corroborating its utility

n mapping intrinsic network organization ( Raichle, 2010 ). By exten-

ion, incorporating network connectivity is likely central to achieving

 full theoretical understanding of how the brain activates during cog-

itive processing. This goes against the historical isolation of connec-

ivity and task activation studies into separate neuroscientific subfields,

nd instead promotes their mechanistic unification via activity flow. Fu-

ure research applying activity flow mapping to more direct measures

f neural activity than the fMRI BOLD response (e.g. human electrocor-

icography or source-modeled electro-/magnetoencephalography) could

ubstantiate this association between restFC and synaptic processes. 

Our findings build on previous successful demonstrations of activ-

ty flow mapping ( Cole et al., 2016 ; Ito et al., 2017 ) by extending the

pproach to a clinical context. Our focus on AD was motivated by its

rim prognosis, raising an urgent need to develop imaging biomark-

rs that can aid early diagnosis and intervention. It was also motivated

y the strong evidence base (relative to other disorders; Fox and Gre-

ius, 2010 ; Woo et al., 2017 ) characterizing restFC and task activation

lterations in at-risk ( Hedden et al., 2009 ; Sheline and Raichle, 2013 ;

h et al., 2016 ) and later stages of AD ( Grady, 2012 ; Ferreira and

usatto, 2013 ; Campbell and Schacter, 2017 ). Considered with the accu-

acy of our restFC-based machine learning classification of at-risk sub-

ects (previously highlighted as an understudied AD group compared to

ater-emerging MCI samples; Liu et al., 2018 ), the success of activity

ow in the present sample strengthens previous staging models of AD

isk factors ( Jack et al., 2010 ; Sheline and Raichle, 2013 ). These suggest

hat restFC alterations emerge many years prior to clinical impairment.

Critically, rather than studying restFC alterations separately from

ask activations, the activity flow framework unifies both measures

echanistically ( Fig. 1 ). The notion that individual variation in task ac-

ivations is associated with individual variation in restFC has been raised

reviously ( Chan et al., 2017 ), and we extend this theoretical association

owards a formalized computational model that generates accurate task

ctivation predictions in held-out subjects. The model affords a synthe-

is of the practical benefits of acquiring resting-state data (e.g. reducing

verall scanner time, enabling imaging assays for clinical samples un-

ble to perform in-scanner tasks) with clearer theoretical grounding via

inking to task activations and associated cognitive function. 

The practical benefits of using restFC in the activity flow approach

xtends to not requiring FC weights in our model to be estimated from

ask data (i.e. taskFC). Our present use of restFC over taskFC is fur-

her motivated by documented methodological issues in separating real

askFC from spurious coactivation effects ( Cole et al., 2019 ), as well

s overall modest influences of task states in explaining FC network

opology versus larger influences of stable group and individual fac-

ors captured by restFC ( Gratton et al., 2018 ; see also Geerligs et al.,

015b ). Nevertheless, it remains to be seen whether taskFC when avail-

ble, and when correctly estimated from task fMRI data of sufficient

uality ( Gratton et al., 2018 ), can improve prediction accuracy of the

ctivity flow model. 

Future research will also need to clarify the chronology of restFC

lterations relative to the emergence of PET amyloid and other AD sig-

atures (e.g. tau deposition; Jones et al., 2016 , 2017 ). Relatedly, recent

emonstration that connectivity at an earlier timepoint (5 years of age)

redicts the location of fMRI task activations associated with later de-

elopment of reading ability (assessed at 8 years of age; Saygin et al.,

016 ), suggests potential to use activity flow to predict task activa-
ion dysfunction well in advance of its actual emergence. This would

ave clear clinical utility, and calls for the extension of the activity flow

ramework to predict timecourse features of AD (i.e. onset, prognosis).

 prerequisite to this endeavor is the furthering of recent attempts (e.g.,

he Alzheimer’s Disease Neuroimaging Initiative, ADNI) to collect lon-

itudinal data in larger elderly samples spanning the full spectrum of

D-related pathology: healthy aged, at-risk, MCI, and post-AD onset.

he latter point is pertinent given recent work highlighting the utility

f training predictive models in larger samples to ensure their generaliz-

bility ( Poldrack et al., 2019 ). This recommendation is at odds with the

resent paucity of large AD neuroimaging datasets that also collect suffi-

ient resting-state and multi-task data. Indeed, the present Knight ADRC

ample was the largest AD-related sample available to us at project

ommencement that had both sufficient amounts of resting-state fMRI

ata and data from multiple tasks (both prerequisites for our analyses).

ence, despite the inherent difficulties in collecting elderly/AD-related

amples, improving data collection practices should be prioritized mov-

ng forwards. 

In interrogating the general utility of activity flow for clinical neu-

oscience, another promising avenue would be to extend the approach

o pathologies beyond AD. Theoretically, activity flow modeling can be

pplied to any meaningful categorization of unhealthy and healthy sub-

roups, given that it makes predictions on the basis of the unhealthy

ubjects’ restFC altering a healthy group activation template. Notably,

he mechanistic basis of the activity flow framework ( Cole et al., 2016 )

ifferentiates it from other more data-driven ‘fingerprinting’ approaches

ith similar predictive aims ( Rosenberg et al., 2016 ; Saygin et al., 2016 ;

avor et al., 2016 ; Lin et al., 2018 ). These approaches use abstract coeffi-

ients to translate an individual’s connectivity profile into predicted task

ctivations (or behavior), as estimated via intensive optimization/cross-

alidation during model training. Such abstract data-driven provisions

isk a lack of theoretical grounding (‘neuroscientific validity’), which has

een highlighted as an obstacle to integrating connectivity-based predic-

ive models into clinical practice ( Stephan et al., 2015 ; Matthews and

ampshire, 2016 ; Woo et al., 2017 ). In contrast, the activity flow model

ssumes that the whole-brain activation state translates a connectiv-

ty profile into a task activation, consistent with the proposed mech-

nism of neural activity (and associated cognitive information) prop-

gating across paths defined by restFC. Another limitation to a re-

iance on data-driven optimization is the evidenced risk of overfitting

o noise in the training set ( Onoda et al., 2017 ; Teipel et al., 2017 ;

ountain-Zaragoza et al., 2019 ). Whilst the need to test the general-

zability of connectivity-based predictive models across out-of-set sam-

les and scanner sites also applies to activity flow, it is possible that

n increased emphasis on neuroscientific theory (e.g. use of the healthy

ctivation template rather than abstract coefficients) will not only ease

ranslation of models to the clinic, but also quantitatively improve their

eneralizability. 

Nevertheless, it is worth highlighting that the reported activity flow

esults serve more as a proof-of-concept at this stage rather than a

eady-to-implement clinical protocol. Future extensions specifically tar-

eting improvement in the individualized (subject-level) prediction ac-

uracy will be necessary to elevate variance explained to clinically useful

hresholds. To this end, some of the optimization methods adopted in

he more data-driven fingerprinting approaches cited above may be inte-

rated with activity flow mapping (e.g. nested cross-validation of restFC

stimation parameters to optimize prediction accuracy). Critically, such

ptimization is only advocated if it complements the model’s underlying

heory. Indeed, the observed improvement in subject-level prediction

ccuracy with the two-cycle activity flow approach (see Supplementary

nformation 1.4) highlights potential for future optimization that is the-

retically grounded (in this case, by similar transformations operational-

zed in neural network models). Collecting higher quality fMRI data (e.g.

igher spatiotemporal resolution sequences, Smith et al., 2013 ), longer

esting-state scan durations per subject ( Gordon et al., 2017 ) and en-

ompassing multiple scanner sites ( Woo et al., 2017 ), all serve as impor-
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ant data acquisition refinements that may also improve individualized

rediction accuracy. Overall, the present findings favor a synergistic ap-

roach, wherein the theoretical constraints imposed by the activity flow

ramework allow for considered optimization of predictive frameworks

hilst mitigating the risk of overfitting, potentially enabling better gen-

ralization in large out-of-set populations. 

In pursuing these extensions of activity flow mapping, it is worth re-

terating the practical benefits of the approach: predictions of cognitive

ask activations (and associated dysfunction) are made without having

ubjects actually perform in-scanner tasks. The resulting task activation

redictions show promise for use in a variety of clinical contexts: to

xpedite diagnosis, identify targets for stimulation-based intervention

 Fox et al., 2014 ; Reinhart and Nguyen, 2019 ), and for longitudinal as-

essment of prognosis/response to intervention ( He et al., 2007 ). The

eported preliminary success of activity flow mapping hence provides a

heoretical foundation for future developments in the use of restFC as a

linical biomarker, aiding the realization of long-upheld goals of incor-

orating functional neuroimaging measures in personalized medicine

pplications. 
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