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Abstract
A wide variety of mental disorders have been associated with resting-state functional network alterations, which are
thought to contribute to the cognitive changes underlying mental illness. These observations appear to support theories
postulating large-scale disruptions of brain systems in mental illness. However, existing approaches isolate differences in
network organization without putting those differences in a broad, whole-brain perspective. Using a graph distance
approach—connectome-wide similarity—we found that whole-brain resting-state functional network organization is highly
similar across groups of individuals with and without a variety of mental diseases. This similarity was observed across
autism spectrum disorder, attention-deficit hyperactivity disorder, and schizophrenia. Nonetheless, subtle differences in
network graph distance were predictive of diagnosis, suggesting that while functional connectomes differ little across
health and disease, those differences are informative. These results suggest a need to reevaluate neurocognitive theories of
mental illness, with a role for subtle functional brain network changes in the production of an array of mental diseases.
Such small network alterations suggest the possibility that small, well-targeted alterations to brain network organization
may provide meaningful improvements for a variety of mental disorders.

Key words: attention-deficit hyperactivity disorder, autism spectrum disorder, functional connectivity, resting state,
schizophrenia

Introduction
Cognitive dysfunction (broadly construed to include per-
ceptual, attentional, memory-based, emotional, and motor
capabilities) is seen in a range of mental disorders and can
significantly impact a patient’s well-being. Indeed, mental
disorders are defined as harmful dysfunction (Wakefield 2007),
such that all mental disorders involve cognitive dysfunction
by definition. As a neural correlate of cognitive impairment
(Greicius 2008; Zhang and Raichle 2010), abnormal resting-state
functional connectivity (RSFC) has been used to identify neural
mechanisms underlying mental illness (for review see Cole,
Repovš, et al. 2014b). RSFC has strong potential for providing

important insights in this area, given its relationship with
a variety of cognitive abilities (Cole et al. 2011; Smith et al.
2015; Shen et al. 2017), its generalization to a variety of task
states (Cole, Bassett, et al. 2014a; Krienen et al. 2014), and
recent findings indicating that RSFC describes the routes of
cognitive information flow during task performance (Cole
et al. 2016; Ito et al. 2017). Indeed, this method has already
provided promising results in the search for biomarkers in
several psychiatric disorders. For example, combined with
graph theory measures, machine learning approaches have
successfully classified patient and control subjects for a range of
disorders (Yahata et al. 2017).
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Many theories postulate large-scale disruption of brain
systems in psychiatric disorders (Uhlhaas and Singer 2011),
typically driven by widespread neurotransmitter dysfunction
(Olney et al. 1999; Risch et al. 2009; Nakic et al. 2010; Miller
et al. 2013). However, such large-scale disruptions of brain
systems have not been thoroughly tested. This is largely due to
a fundamental aspect of methodology used in clinical studies,
wherein only differences among patients and healthy controls
are emphasized rather than both differences and similarities.
Yet, taking similarities into account is essential for gaining
perspective on the nature and severity of the neural changes
underlying mental disorders. For instance, it is possible that
a widespread neurotransmitter dysfunction causes a given
disorder, but only by subtly altering the overall network organi-
zation. This would be important to know for understanding
the underlying causes of the disorder and for developing
treatments.

Here, we therefore take a comprehensive whole-connectome
perspective using a simple graph distance approach—connectome-
wide similarity (Schultz and Cole 2016)—that quantifies changes
in all functional connections at once, providing information
about the overall pattern of intrinsic network architecture. In
this way, we were able to compare RSFC patterns across several
psychiatric disorders and healthy control groups and derive
measures of functional network pattern (dis)similarity. We
initially developed this approach to compare task-evoked func-
tional connectomes with resting-state functional connectomes
(Cole, Bassett, et al. 2014a; Schultz and Cole 2016), but we apply
it here to compare clinical connectomes with healthy control
connectomes in the resting state. This provides a new way of
quantifying brain function and neural system organization in
psychiatric disorders.

We (and others) recently found that task-related changes
to functional network organization are small relative to the
overall functional network organization during rest and a variety
of tasks (Cole, Bassett, et al. 2014a; Krienen et al. 2014). This
suggests that meaningful changes in cognition (in this case task-
related cognitive differences) correspond with small functional
network changes. Further, the large majority of patients appear
to maintain most basic cognitive abilities enjoyed by healthy
individuals (e.g., the ability to recognize common objects,
navigate a room, produce speech, and read simple sentences).
Building on this logic, we hypothesized that the overall intrinsic
functional network architecture—which appears to support
these cognitive abilities via its particular network organization
(Smith et al. 2009; Cole et al. 2016; Tavor et al. 2016; Ito et al.
2017)—would be similar across patients, and between patient
and control subjects. We tested this idea across a range of
patient datasets varying in diagnosis, age, and symptom sever-
ity. Importantly, even with high cross-group similarity, between-
group differences can still indicate meaningful changes in
functional network architecture. To test this, we predicted group
membership (clinical vs. control) for each participant using
a classification analysis based on RSFC pattern similarity to
either group.

Testing these hypotheses about whole-brain intrinsic
architecture pattern similarity across disorders—here including
autism spectrum disorder (ASD), attention-deficit hyperactivity
disorder (ADHD), and schizophrenia—would enable us to put
disease-related RSFC alterations in perspective and possibly
help shape future theories of the neural basis of cognitive
deficits in these populations.

Materials and Methods
Datasets and Participants

Subjects from four different datasets were included in the
present study to facilitate generalization of findings across men-
tal disorders. ADHD subjects are part of the publicly available
ADHD-200 dataset from NYU Langone Medical Center (http://
fcon_1000.projects.nitrc.org/indi/adhd200/), which includes 123
patients diagnosed with ADHD and 99 healthy control subjects
(presence or absence of an ADHD diagnosis based on evaluations
with the K-SADS-PL (Kaufman et al. 1997) and the CPRS-
LV (Gurley 2011). Subjects with low-quality resting-state or
anatomical data, as determined by the ADHD-200 initiative’s
quality assessment based on visual time series inspection, were
excluded from our sample. Resting-state and anatomical data of
the remaining 87 healthy control subjects and 93 ADHD subjects
were preprocessed (age range 7–18 years). ASD subjects were
part of the publicly available ABIDE dataset from NYU Langone
Medical Center (http://fcon_1000.projects.nitrc.org/indi/abide/a
bide_I.html). Inclusion as a patient in the study required a
clinician’s DSM-IV-TR diagnosis of Autistic Disorder, Asperger’s
Disorder, or Pervasive Developmental Disorder Not-Otherwise-
Specified, which was supported by review of available records,
an Autism Diagnostic Observation Schedule, review of the
participant’s history, and when possible, an Autism Diagnostic
Interview-Revised. Following these inclusion criteria, 79 ASD
and 105 control subjects were included for preprocessing (age
range 6.5–39.1 years). The ADHD and ASD samples in this study
were collected at the same site and could therefore be directly
compared in our analyses without site differences as confounds.

In addition to these two samples with neurodevelopmen-
tal disorders, two schizophrenia samples were included in the
present study. The first was collected at Yale University and
consisted of 90 schizophrenia patients and 90 healthy con-
trol subjects (age range 17–65 years). Patients were identified
through outpatient clinics and community mental health facil-
ities (Anticevic et al. 2013). The second sample is the publicly
available COBRE schizophrenia dataset, with 72 schizophrenia
patients and 75 healthy control subjects (age range 18–65 years).
Each patient completed the Structured Clinical Interview for
DSM-IV Axis I disorders (First et al. 2002) to confirm their diagno-
sis (see http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
for exclusion criteria). The number of subjects in the final sam-
ple is displayed in Table 1.

The data were collected by multiple research groups
and the type of clinical information collected was dependent
on diagnosis (ADHD vs. ASD vs. schizophrenia). Consequently,
diagnosis-specific symptom scores were available for each
dataset: ADHD-index for ADHD patients, Autism Diagnostic
Observation Schedule (ADOS) for ASD, and Positive and Negative
Symptom Scale (PANSS) for Schizophrenia were included
(see Table 1 for mean symptom scores). As expected, the
mean ADHD index is higher in ADHD patients than control
subjects (t(1,169) = −22.5, P < 0.00001, d = 3.2). No symptom scores
were available for the other control groups. Comorbidity was
reported for 30 ADHD patients and 41 ASD patients, and
no comorbidity data were available for the schizophrenia
groups. However, the COBRE dataset excludes all neurological
disorders, substance abuse disorders (excluding nicotine), and
intellectual impairment among schizophrenia patients and
healthy controls. The COBRE dataset also excluded individuals
using medications for ADHD, anxiety, or depression, or who have
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Table 1 Clinical and demographic characteristics

SCZ1 (Yale) SCZ2 (COBRE)

Schizophrenia Control Significance Schizophrenia Control Significance

N 87 90 59 70

M SD M SD T-value
/χ 2

P-value
(Two-tailed)

M SD M SD T-value
/χ 2

P-value
(Two-tailed)

Age 33.0 11.4 30.7 12.0 −1.3 0.2 37.2 14.1 35.8 11.7 −0.6 0.6

Gender %male 65.6 72.4 1.0 0.3 18.6 31.4 2.7 0.1

Education 13.2 2.2 15.2 2.2 6.2 <0.00001 4.0 1.4 4.7 1.3 2.7 0.008

Educ. Mother 13.4 2.9 14.0 2.8 1.3 0.2

Educ. Father 13.7 3.5 14.4 3.2 1.4 0.2

Ed. Primary

Caretaker

4.3

4

2.2 4.7 1.9 1.1 0.3

Hand. %right 85.1 88.9 0.6 0.4 84.7 95.7 4.6 0.03

IQ

missing

97.8

2

15.3 106.8

7

8.9 4.6 <0.0001

CPZE

missing

228.3

0

197.0 352.8

1

307.7

Symptom score 60.1 14.0 58.3 13.7

PANSS Pos 15.7 4.8 14.5 4.8

PANSS Neg 14.2 5.4 14.5 4.9

PANSS Gen 30.2 7.1 29.2 8.2

Clarification: IQ: WASI (Wechsler Abbreviated Scale of Intelligence) scores were available for ADHD and ASD, WAIS for the Yale dataset. Education: Yale: education in
years; COBRE: 1 = Grade 6 or less, 2 = Grade 7–11, 3 = high school graduate, 4 = attended college, 5 = graduated 2 years college, 6 = graduated 4 years college. Symptom
scores: ADHD index (ADHD patients and control subjects), ADOS total (ASD patients), PANSS total (Schizophrenia patients). Hand: Handedness score for ADHD and
ASD datasets, percentage right-handed subjects for SCZ data. PANSS: Positive, negative, and general symptom scores for schizophrenia patients. CPZE: Chlorpromazine
equivalence; measure to compare dosage of different types of antipsychotics. Missing: Number of subjects for which data are not available. Only mentioned when
relevant.

a “current or past psychiatric disorder” from the healthy control
group.

Since our main focus in this study is on similarity of
FC architecture across patients and healthy control subjects
regardless of variation in phenotypic factors, groups were not
specifically matched by age, gender, and IQ, although matching
for age and gender was done at the time of collection for all
available datasets. In the final sample, lower IQ scores were
found in ADHD (t(1,169) = 2.0, P = 0.04, d = 0.32), ASD (t(1,182) = 2.4,
P = 0.02, d = 0.35), and Yale schizophrenia patients (t(1,166) = 4.63,
P < 0.0001, d = 0.72) than in control subjects of those groups. No
IQ scores were available for the COBRE schizophrenia sample.
However, education scores were significantly different between
patients and control subjects (t(1,127) = 2.7, P = 0.008, d = 0.48) for
that sample, as expected. ADHD subjects in the final sample for
analysis were slightly younger than the controls (t(1,169) = 2.3,
P = 0.02, d = 0.35), but there were no significant age differences
in the other data samples. Note that lower IQ is associated with
schizophrenia (Khandaker et al. 2011), ASD (Volkmar et al. 2004),
and ADHD (Kuntsi et al. 2004), and so such differences in these
samples were entirely expected.

Neuroimaging Acquisition

The resting-state fMRI data for ADHD and ASD patients and
healthy control subjects were acquired on a Siemens Mag
netom Allegra 3.0 Tesla MRI scanner. Participants were asked
to remain still with their eyes closed but without falling asleep.
For the resting state multiecho EPI images, 33 slices were
acquired every 2000 ms (FOV = 240 x 192 mm, TE = 15 ms, flip
angle = 90◦, voxel size 3 x 3 x 4 mm3) with a total of 180 volumes
per run.

Functional images for the SCZ1 (Yale) dataset were collected
using a 3-T Siemens Allegra scanner. A total of 210 volumes were
acquired for each participant in the Yale schizophrenia dataset,

with a TR of 1500 ms, fov = 220 mm, TE = 27 ms, flip angle = 60◦,
and voxel size 3.43 x 3.43 x 4, eyes open (Anticevic et al. 2014).

For the SCZ2 (COBRE) dataset, a 3-T Siemens Trio Tim scanner
was used to acquire 33 slices every 2000 ms (TE = 29 ms, flip
angle = 75◦, fov = 240 mm, voxel size 3 x 3 x 4 mm3) with a total
of 150 volumes per run. Participants were asked to keep their
eyes open. A T1-weighted MPRAGE image was collected for each
participant for all datasets.

Preprocessing

Preprocessing was performed using Freesurfer (to identify ven-
tricles, white matter, gray matter, and anatomical structures)
(Destrieux et al. 2010), FSL’s FLIRT for brain image alignment
(Smith et al. 2004), Matlab 2014b for bandpass filtering and nui-
sance regression, and AFNI (Cox 1996) for all other preprocessing
steps. Volume analysis was performed on all datasets. Func-
tional images underwent slice-time correction, alignment (with
the anatomical image and MNI template), removal of first 6 s
of data, motion scrubbing (censoring volumes with high motion
based on framewise displacement with a 0.5 mm threshold, see
Power et al. 2012), time series extraction, nuisance regression
(removal of six motion estimates, ventricle and white matter
signals, and their derivatives), bandpass filtering (0.008–0.09 Hz),
and spatial smoothing (FWHM = 6 mm).

An additional cortical surface-based analysis was performed
with the Yale schizophrenia sample (which was also prepro-
cessed using the volume-based approach). The surface-based
analysis involved using the HCP minimal preprocessing pipeline
(Glasser et al. 2013), followed by removal of the first 6 s of data,
motion scrubbing (using framewise displacement > 0.5 mm),
time series extraction, nuisance regression, and temporal filter-
ing. Note that obtaining similar results to the main analyses with
this distinct preprocessing stream would indicate robustness of
results to particular analysis choices.
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Alternative Motion Correction

As an alternative preprocessing approach correcting for motion
artifacts, we adopted the “36P” nuisance regression method
as evaluated in Ciric et al. (2017), also see (Satterthwaite et al.
2013) in a follow-up (volume-based) analysis. This method was
previously found to be especially effective in limiting the impact
of motion artifacts on functional connectivity data. In addition
to removal of six motion estimates, ventricle and white matter
signals, and their derivatives, this method involves removal
of global signal, all derivatives, quadratic terms, and squares
of derivatives (resulting in a total of 36 parameters). If mean
relative root-mean-squared (RMS) displacement exceeded 0.25,
then volumes were flagged for spike regression (Ciric et al.
2017). Flagged time points were set to a BOLD value of 0
and therefore did not contribute to the model fit. Functional
images underwent slice-time correction, alignment (with the
anatomical image and MNI template), removal of first 6 s of data,
time series extraction, bandpass filtering (0.01–0.08 Hz), and
nuisance regression as described above. In this follow-up anal-
ysis, Matlab 2014b was used for bandpass filtering, Python 2.7
for nuisance regression, and AFNI for all other prepro
cessing steps. The main results of the similarity analyses
(see below) were calculated using this version of the prepro-
cessed data, as noted (using the term "36P" or "36 parameters") .

To further address motion in this analysis of clinical groups
with high levels of head motion, we used RMS displacement
to identify high-motion participants for removal. We excluded
subjects with less than 4 min of “unflagged” resting-fMRI data
to increase the likely reliability of the functional connectivity
estimates in our sample. This resulted in 6 control subjects and
2 patients being removed for analysis from the ADHD dataset, 0
control subjects and 0 patients from the ASD dataset, 0 control
subjects and 3 schizophrenia subjects from the Yale dataset, and
5 control subjects and 13 schizophrenia subjects from the COBRE
dataset. Hence, subject retention rates (subjects with more than
4 min of good quality resting-state data) after nuisance regres-
sion with spike filtering for patients and control subjects were
respectively 98% and 97% for ADHD, 100% and 100% for ASD, 97%
and 100% for the Yale schizophrenia data, and 82% and 93% for
the COBRE schizophrenia data.

Statistical Analysis

For our main analysis including all datasets, we sampled data
for each individual from a set of 264 independently identi-
fied functional regions (Power et al. 2011) to provide results
at the region, system, and whole-brain level. In an additional
analysis—including only schizophrenia patients from the Yale
study—we used another set of regions with 360 parcels (Glasser
et al. 2016) to test the robustness of our results, see Replica-
tion of architecture similarity with a different set of ROIs. For
both analyses, time courses were extracted from each region
and averaged across voxels/vertices for use in all subsequent
analyses, which were performed in MATLAB 2014b (The Math-
works). Pearson correlations were calculated between all ROIs
for each subject, and the resulting functional connectivity (FC)
matrix was Fisher’s Z-transformed to normalize the distribu-
tion of values. These values were then used on all subsequent
statistical tests.

To determine similarity of whole-brain RSFC between two
groups, FC patterns were compared by taking the upper triangle
of the RSFC matrices to be compared (thereby excluding

self-connections and redundant connections), vectorizing the
Fisher’s Z-transformed FC values, averaging across subjects
within each group, and computing Spearman rank corre
lations (and, separately, Pearson correlations) on the resulting
vectors. Note that Pearson correlation is a standard pattern
distance approach, with a simple transform (1 – r) swit
ching the measure from similarity to dissimilarity. We chose
to use this distance measure in terms of similarity rather
than dissimilarity (despite their one-to-one correspondence) in
order to facilitate intuitive understanding of the results. Further,
using the original r values (and rho values in the case of
Spearman correlations) allowed us to use Fisher’s z-trans
form in order to make better statistical inferences at the group
level.

We used the Mantel permutation test approach (Mantel 1967;
Nummenmaa et al. 2012) to calculate similarity P-values. This
nonparametric test accounts for nonindependence of the val-
ues in similarity/distance matrices such as FC matrices. Such
nonindependence arises from the same source time series in
a given row of an RSFC matrix being compared with all other
time series, such that any idiosyncrasies in the source time
series would affect all such comparisons in that row. Imple-
menting the Mantel permutation test involved random shuf-
fling of region identity (as opposed to individual connections)
in the RSFC matrices followed by comparison of the matrices
(using Pearson and Spearman correlation). This was repeated
10 000 times to create a null distribution of similarity/distance
values. The resulting null distribution was converted into a
probability distribution function (using MATLAB function ksden-
sity) before calculating a P-value. All reported P-values for RSFC
matrix comparison used a Mantel permutation test. Note that
we report P-values lower than 0.000001 as “P < 0.000001” because
of the unrealistic level of precision inherent in numbers smaller
than this.

We also used a more strict version of the Mantel test
that takes region clusters (functional networks) into account,
addressing potential concerns that higher order organization
could also bias similarity/distance matrix comparisons (Guillot
and Rousset 2013). Note that a strict null hypothesis would
be that network organization is completely different between
groups, such that the original Mantel permutation test
would be sufficient. However, a less strict null hypothesis is
that regions are similarly clustered into networks but that those
networks are differently organized. The network-level Mantel
test uses this latter null hypothesis. This test was identical to
the Mantel test described above except that the Power et al.
(2011) networks were permuted in order rather than the
individual regions. The resulting P-values for RSFC matrix
comparison using the network-level Mantel permutation
test were identical to those for the original Mantel test (all
P < 0.000001).

Since region-level differences have been found in RSFC
between the clinical populations studied here and heal
thy controls, we also compared individual connections
between groups. T-tests were used to compare RSFC values
for each of the 34 716 connections. Due to the large number
of statistical tests, we report false discovery rate (FDR)-
corrected P-values (Genovese et al. 2002). We also com
pared the resulting t-statistic connectivity matrices by running
a Spearman correlation test on the upper triangle across
pairs of unthresholded t-statistic connectivity matrices, as
was done for the RSFC matrix comparisons in the prior a
nalyses.
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Classification Analysis

We also ran a classification analysis (Yahata et al. 2017) to fur-
ther investigate if existing differences in resting-state network
architecture can be used to distinguish patients from healthy
controls. In order to investigate whether we could accurately
predict group membership based on RSFC patterns, we con-
ducted a leave-two-out classification analysis for each dataset
separately to classify each subject. We balanced datasets by
randomly selecting the same number of patients and control
subjects per dataset (based on the number of subjects in the
smallest group). Such balancing is essential to reduce classi-
fier bias (e.g., always predicting “patient” for a dataset with
more patients than controls). For each cross-validation fold, we
compared one patient and one healthy control subjects’ RSFC
patterns (test set) with the average patient and average control
RSFC pattern (training set, excluding the held-out control and
patient). In addition, we tested across ADHD and ASD, and across
schizophrenia datasets by training on one dataset and testing on
the other dataset, and vice versa. Similarity based on Pearson’s
correlation of a subject’s RSFC pattern to the average RSFC
pattern of the other dataset’s groups was used to assign a label
“patient” or “control” to a subject in the test set. Prediction accu-
racy, sensitivity, and specificity—based on a classification with
10 000 randomly initialized iterations—are reported in Results.
P-values were calculated based on standard binomial tests from
the classification outcomes.

Results
Large Overlap in RSFC Patterns in ADHD, ASD Patients,
and Healthy Controls

We used fMRI to examine RSFC in patients with various mental
disorders. We sought to identify common functional network
patterns (compared with matched healthy control subjects) for
multiple mental disorders with diverse pathophysiology, symp-
tomatology, and etiology. We started by analyzing publicly avail-
able resting-state fMRI data from ADHD and ASD patients and
healthy control subjects. We extracted time series from 264
regions of interest covering all major systems of the brain (Power
et al. 2011, see Fig. 1a) and calculated all pairwise correlations,
which were normalized with a Fisher’s z-transformation for all
subsequent statistical tests. RSFC matrices ordered by large-
scale functional network for ADHD and ASD are displayed in
Figure 1b (we discuss the results with schizophrenia in the fol-
lowing section).

For both clinical studies, we calculated the similarity of RSFC
patterns between patients and control subjects using the 264 x
264 RSFC matrices with pairwise connections. Each individual’s
FC matrix consisted of a minimum of 4 min of resting-state
fMRI data (after removing high-motion volumes; see Methods).
In addition to a (parametric) Pearson correlation, a (nonparamet-
ric) Spearman rank correlation (rho) for the whole-brain RSFC
configuration was used to compare patients’ RSFC pattern with
that of control subjects. Mantel permutation tests were used to
calculate P-values, accounting for the nonindependence of RSFC
values for a given region within the RSFC matrices (Diniz-Filho
et al. 2013). We also used a more strict version of the Mantel per-
mutation test that takes region clusters (functional networks)
into account, addressing potential concerns that higher order
organization could also bias similarity/distance matrix com-
parisons (Guillot and Rousset 2013). All P-values were slightly

higher than the original Mantel test results (as expected), but all
remained P < 0.000001. See Methods for more details.

We found that for both clinical groups, RSFC patterns exhib-
ited complex network organizations (apparent in Fig. 1b) that
were highly similar to the control RSFC patterns. ADHD & con-
trol: Pearson’s r2 was 0.89, P < 0.000001 for the ADHD and healthy
control groups and 0.87, P < 0.000001 for the ASD and healthy
control groups. These results suggest a largely common intrinsic
network architecture in healthy individuals and patients, with
89% and 87% of the linear variance shared between patients
and controls on average for these groups. Results were simi-
lar when using Spearman correlations: rho = 0.89, P < 0.000001
for the ADHD groups and rho = 0.86, P < 0.000001 for the ASD
groups. Note that the results in Figure 1 were generated using
the “36P” preprocessing method, but that results from the less
stringent motion correction method were not significantly dif-
ferent. By focusing on the whole-brain RSFC pattern—using a
connectome-wide comparison measure—we found that intrin-
sic network architecture is highly similar across patients and
healthy control subjects in these two clinical groups, as hypoth-
esized.

Large Overlap in RSFC Patterns in Schizophrenia
and Healthy Controls

Since the ADHD-200 NYU and ABIDE NYU data were collected
at the same site, in the same age group, and with the same MRI
parameters, we decided to test the generalizability of our con-
clusions with a distinct mental disorder and distinct datasets.
These datasets included schizophrenia patients and matched
healthy controls collected at two separate sites, in a distinct
age group, and with distinct MRI parameters from the previous
datasets. Whereas comorbidity exists between schizophrenia
and ASD, and between schizophrenia and ADHD, there is much
less overlap in symptoms than between ASD and ADHD (note
that a dual diagnosis of these disorders is only possible since
the introduction of DSM-V). Moreover, in this group of patients
and control subjects only adults were included, in contrast to the
ADHD (only children) and ASD (mostly children, but also adults)
groups.

Our connectome-wide distance analysis again indicated a
highly similar RSFC configuration pattern between schizophre-
nia patients and healthy control subjects with r2 of 0.83 and 0.82
(respectively, Yale schizophrenia & control: Pearson’s r2 = 0.83,
P < 0.00001; COBRE schizophrenia & control: Pearson’s r2 = 0.82,
P < 0.00001, see Fig. 1b), demonstrating that the previous finding
of RSFC similarity generalizes to other mental disorders (and
other age groups and MRI parameters). Results were similar
when Spearman correlation was used as the similarity/distance
measure (Yale schizophrenia & control: rho = 0.84, P < 0.00001;
COBRE schizophrenia & control: rho = 0.84, P < 0.00001).

A combined analysis of the two schizophrenia datasets
resulted in even higher similarity between patient and control
groups with an r2 of 0.88 (P < 0.00001), and Spearman’s rho of
0.89 (P < 0.00001).

RSFC Pattern Similarity Across Disorders

We next sought to determine the general similarity between
patients and healthy controls across all three mental disorders.
The whole-brain RSFC matrices were averaged across all
patients and, separately, across all healthy controls. These
matrices showed a strong correlation between patients and
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Figure 1. Whole-brain functional network organization is highly similar between patient and healthy control groups across a variety of mental diseases. (a) Functionally

defined cortical and subcortical regions (nodes), along with a standard network partition based on healthy young adults (Power et al. 2011) used for whole-brain
analyses. (b) RSFC matrices for ADHD, ASD, and schizophrenia patients show highly similar resting-state network architectures with healthy individuals. Colors along
the edges of the matrices indicate previously identified functional networks, matching the colors in (a). The red blocks along the diagonal indicate stronger RSFC within

relative to between networks. The r2 values can be interpreted as the percentage of z-normalized linear variance shared (e.g., 0.89 = 89% shared linear variance). Note
that these r2 values can easily be converted into correlation distance (1 – r) values, such that these results also imply low distance in network state space (Schultz and
Cole 2016) between groups. The results visualized here involved the “36P” approach for greater motion-related confound removal, but the results were highly similar
when using a more typical preprocessing approach.

controls. The r2 was 0.95, suggesting 95% of the linear variance
was shared between patients and controls on average. Spearman
rho was 0.94, P < 0.00001. Similarity between patient groups
was high as well (ADHD/ASD: r2 = 0.87, P < 0.00001, rho = 0.87,
P < 0.00001; ADHD/schizophrenia: r2 = 0.77, P < 0.00001, rho = 0.80,

P < 0.00001; ASD/schizophrenia: r2 = 0.74, P < 0.00001, rho = 0.86,
P < 0.00001) and between control groups (ADHD/ASD: r2 = 0.93,
P < 0.00001, rho = 0.93, P < 0.00001; ADHD/schizophrenia: r2 = 0.80,
P < 0.00001, rho = 0.83, P < 0.00001; ASD/schizophrenia: r2 = 0.80,
P < 0.00001, rho = 0.90, P < 0.00001).
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Replication of Architecture Similarity with a Different
Set of ROIs

To test the robustness of our RSFC similarity findings, we sought
to replicate them with a different set of brain regions (with the
Yale schizophrenia dataset). We used a parcellation of func-
tionally defined regions that was recently developed by Glasser
et al. (2016). This cortical parcellation with 360 regions was
constructed using convergence across multiple neuroimaging
techniques (resting-state and task fMRI, myelin maps and cor-
tical thickness), and is believed to be more accurate than pre-
vious parcellations because of the consistency of areal bor-
ders between data from different imaging modalities (Glasser
et al. 2016). Networks were defined in a separate study using
community detection analysis with RSFC data (see Methods –
Alternative Motion Correction) (Ji et al. 2019). Similar to the
analysis with volume (Power) regions, data from surface regions
were extracted, RSFC was estimated, and Spearman correlations
between RSFC matrices were calculated. Similarity analysis of
RSFC matrices of schizophrenia patients and control subjects
returned to r2 = 0.85 for the Yale dataset (rho = 0.92, P < 0.000001,
see Fig. 2; RSFC similarity was r2 = 0.79 with the volume ROIs),
again supporting the existence of a largely similar intrinsic
functional network architecture across patients and controls.

Small-Scale RSFC Deviation in Mental Disorders

Importantly, similar RSFC patterns between patient and control
groups do not necessarily mean that all functional connec-
tions are normal in patients with mental disorders. Indeed,
many results in the literature demonstrate statistically signif-
icant RSFC differences between patients and healthy controls,
even after controlling for between-group motion confounds as
we have here. To test for consistency with prior studies, we also
compared individual connections, that is, tested for between-
group differences on every unique connection pair in the matrix
(34 716 connections). In this way, in addition to testing the over-
all pattern with Spearman correlations, we examined smaller-
scale (individual connection-level) FC alterations in the clinical
groups. The resulting patterns of t-values (patient vs. control for
each connection, on “36P” preprocessed data) are displayed in
Figure 3a, in which t-values have been controlled for covariates.
For ADHD and ASD, after regressing out age and gender, 4.35%
and 6.43% of connections were changed (uncorrected). After
regressing out age, gender and education in the schizophrenia
datasets, 6.46% (Yale) (for age, gender, mother, and father educa-
tion: 8.06%) and 8.29% (COBRE) of connections showed changes.
When correcting these results for multiple comparisons, how-
ever, only when the Yale and COBRE schizophrenia datasets
were combined, results showed 0.10% changed connections (see
Fig. 3b) (uncorrected this was 10.76%). It should be noted that
regressing out education for schizophrenia is especially prob-
lematic since lower educational attainment appears to be part
and parcel of the illness expression itself (Kahn and Keefe 2013).

Altered Connections After Removal of 6 Motion
Estimates, Ventricle and White Matter Signals, and
Their Derivatives: Similar Results Across Datasets

Our initial preprocessing pipeline resulted in patterns of t-values
that show similarity across the datasets with a significant cor-
relation between (unthresholded) t-value patterns of ADHD and
ASD datasets (rho = 0.24, P < 0.000001) and the two schizophre-
nia datasets (rho = 0.29, P < 0.000001). Between ADHD/ASD and

schizophrenia datasets, correlations were weaker but also sig-
nificant (ADHD & Yale: rho = −0.04, P < 0.000001, ASD & Yale:
rho = 0.14, P < 0.000001, ADHD & COBRE: rho = 0.04, P < 0.000001,
ASD & COBRE: rho = 0.09, P < 0.000001).

After thresholding (P < 0.05) and FDR correcting the t-value
patterns for multiple comparisons on this preprocessed data
with less nuisance regression, we found several connections
that had significantly altered RSFC connectivity in ADHD and
schizophrenia patients compared with healthy control groups:
0.34% of connections for ADHD, 4.71% for Yale and 0.02%
for COBRE schizophrenia data were changed. When the two
schizophrenia datasets were combined, 8.13% of connections
were altered in patients compared with control subjects
(FDR-corrected).

Weaker Results for Altered Connections After Stringent
“36P” Nuisance Regression

When nuisance regression with 36 parameters was applied,
similarities across datasets became weaker, but a significant
correlation remained between t-value patterns of ADHD and
ASD datasets (rho = 0.21, P < 0.000001) and the two schizophre-
nia datasets (rho = 0.20, P < 0.000001). Between ADHD/ASD and
schizophrenia datasets, some correlations were also significant
(ADHD & Yale: rho = −0.03, P < 0.000001, ASD & Yale: rho = 0.09,
P < 0.000001, ADHD & COBRE: rho = 0.01, P = 0.06, ASD & COBRE:
rho = 0.05, P < 0.000001).

After correcting for multiple comparisons, however, only the
schizophrenia groups had significantly changed connections
(0.003% for the Yale dataset and 0.05% for the COBRE dataset).
When we also regressed out age and gender from the connec-
tivity data, similarity was still rho = 0.19, P < 0.00001 for the
ADHD and ASD datasets. Similarly, for the Yale and COBRE
datasets, when age, gender and education were controlled
for, similarity was rho = 0.21, P < 0.00001. Between ADHD/ASD
and schizophrenia datasets correlations were low, and only
significant in some cases (ADHD & Yale: rho = −0.004, P = 0.41,
ASD & Yale: rho = 0.03, P < 0.00001, ADHD & COBRE: rho = 0.03,
P < 0.00001, ASD & COBRE: rho = −0.0009, P = 0.86).

Note the high similarity between unthresholded RSFC pat-
terns between the schizophrenia datasets in Figure 3a, which
helps justify combining them into a single analysis.

What Exactly are the Aberrant Functional Connections?

Aside from knowing the percentage of aberrant functional con-
nections, it would also be useful to know their identity. For the
ADHD comparisons, no connections reached the FDR threshold
of significance, but 1834 were significant before correction, with
the large majority implicating the default mode network. The
10 most common types of aberrant connections (with exact
number in parentheses) were: sensory/somatomotor hand and
default mode (100 connections), default mode and visual (100),
default mode and frontoparietal task control (100), default mode
and default mode (88), default mode and uncertain (64), default
mode and salience (58), visual and frontoparietal task control
(58), uncertain and default mode (50), sensory/somatomotor
hand and frontoparietal task control (43), and default mode and
subcortical (43).

For the ASD comparisons, no connections reached the FDR
threshold of significance, but 2241 were significant before
correction, with the large majority again related to the default
mode network. The ten most common types of aberrant
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Figure 2. Testing for generalization to a distinct set of regions, network definition. (a) Network partition based on the multimodal parcellation by Glasser et al. (2016). The
main parcellation (Fig. 1) used regions defined in terms of voxels, whereas this parcellation is defined in terms of surface vertices. Functional networks were assigned
based on the General Louvain method for community detection with resting-state data in healthy adults (Ji et al. 2019). (b) RSFC matrices based on this alternative set

of regions and networks were used to replicate the previously found similarity between schizophrenia patients and healthy control subjects. This suggests that the
particular choice of regions and networks used for the main analyses did not substantially influence results—that the results are generalizable.

functional connections were: default mode and visual (140),
default mode and default mode (132), default mode and
frontoparietal task control (116), sensory/somatomotor hand
and default mode (91), default mode and salience (78), default
mode and uncertain (67), uncertain and default mode (63),
default mode and ventral attention (59), cingulo-opercular task
control and default mode (58), visual and frontoparietal task
control (52).

For the combined SZ group, 194 connections reached the FDR
threshold and these primarily were associated with somatomo-
tor and subcortical regions, most notably: sensory/somatomotor
hand and salience (18), sensory/somatomotor hand & subcorti-
cal (17), sensory/somatomotor hand and sensory/somatomotor
hand (15), subcortical and subcortical (14), salience and sub-
cortical (13), cingulo-opercular task control and subcortical (11),
sensory/somatomotor mouth and salience (7), sensory/somato-
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Figure 3. Patient versus control group comparisons yield minimal differences (especially after controlling for motion confounds). RSFC differences were present
between patients and controls but only for a small set of connections that were only statistically significant for the schizophrenia group (P < 0.05, FDR corrected). The
“36P” results with additional motion confound removal are shown. (a) The t-value patterns resulting from patient-control comparison of individual connections. (b)
FDR-corrected t-values (p < 0.05) resulting from the same patient-control comparison of individual connections as in (a). Note that data from the COBRE dataset (33

patients and 45 controls) and the Yale dataset (75 patients and 84 controls) are combined given their similar RSFC patterns. A small set of statistically significant results
were identified in the ADHD versus control comparison (but not the ASD comparison) when the “36P” approach for removing additional motion confounds was not
used (see the main text).

motor hand and auditory (7), default mode and subcortical (6),
and uncertain and subcortical (6).

Classification of Individuals Based on Multivariate
Connectome-Wide Similarity

Although we found functional network architecture in patients
and control subjects to be highly similar, the altered connections
that were found when comparing individual connections (see
Fig. 3) suggested that connectome-wide similarity might still
be informative with regard to diagnosis. Further, it might be
the case that multivariate patterns of RSFC values distinguish
individual patients from healthy controls where connection-
specific t-tests did not. We tested these ideas with a multivariate
classification analysis. In our classification model we used
RSFC pattern similarity as a predictor variable, and tested
whether an individual’s functional architecture was more
similar to that of the average patient or control by using a
leave-two-out approach (one patient and one healthy control
subject as test set for each cross-validation fold). This is a form
of minimum-distance classification (Mur et al. 2009). While
future research will likely find more effective classification

approaches, there were multiple advantages of this approach
relative to more standard classification approaches (e.g., support
vector machines). First and most importantly, this approach
directly relates to the connectome-wide similarity analyses
reported earlier, expanding connectome-wide similarity to
the individual subject level. Second, unlike most classification
approaches (e.g., the “C” parameter in support vector machines),
this approach does not require parameter choices. Third, this
approach reflects the fact that multivariate correlations are now
well-validated similarity/distance measures for neuroscientific
data (Walther et al. 2016). Fourth, this approach is highly
intuitive, since it simply measures which group an individual
is closer to in multivariate feature space. Note that individual-
level connectome-wide similarity tended to be smaller than
the group-level results, likely because group-level averaging
increases the signal-to-noise ratio (from more data) and
smoothes across individual differences that are idiosyncratic
with regard to group membership. Such increased signal-to-
noise ratio is a clear advantage, and smoothing across individual
differences is not problematic under the straightforward
assumption that there is some common set of features across
most individuals of each group. Some of these advantages were
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Figure 4. Individual patient-control multivariate classification based on connectome-wide resting-state functional connectivity patterns. Class labels were predicted
above chance using a simple classification method in (a) ADHD, (b) ASD and the schizophrenia, (c) Yale, and (d) COBRE datasets. Classifying a subject involved computing
that subject’s connectome-wide similarity with the patient-group average and the control-group average, with that subject being assigned to the group with higher

similarity. This demonstrated the potential informativeness of whole-brain RSFC similarity in diagnosing individuals, despite overall high similarity between patients
and controls at the group level. Note that more complex classifiers might provide better classifications but that straightforward inferences regarding connectome-wide
similarity would not be possible with such approaches.

still retained in the classification analyses, since each individual
was compared with group averages.

Classification with “Conventional” Motion
Corrected Data

Results from the classifications with our initial preprocessing
pipeline are shown in Figure 4 (chance = 50%). This analysis—
based on whole-brain RSFC patterns—resulted in 58% predic-
tion accuracy for ADHD (P = 0.03, 57% sensitivity, 58% specificity,
N = 77 per class), and 64% prediction accuracy for ASD (P = 0.0005,
66% sensitivity, 63% specificity, N = 70 per class). Note that sen-
sitivity and specificity are directly related to false negative and
false positive rates, as well as other measures of classifier per-
formance (Florkowski 2008). For the two schizophrenia groups,
we could accurately predict group membership for 75% (Yale,
P < 0.00001, 81% sensitivity, 68% specificity, N = 75 per class) and
68% (COBRE, P = 0.002, 79% sensitivity, 58% specificity, N = 33 per
class) of subjects.

We next sought to test for generalization of connectome-
wide RSFC patterns across datasets, assessing the ability to
predict diagnoses based on cross-dataset RSFC alterations.
This would suggest robustness of the RSFC alterations despite
their small effect on connectome-wide similarities, and despite
the data being collected at different locations (with potential
scanner-specific influences on RSFC patterns). Demonstrating
robust generalization, we were able to accurately predict group
membership (patient vs. control) above chance across the
ADHD and ASD datasets, and across the two schizophrenia
datasets. For this analysis, we trained a classifier on one dataset
and tested subjects in the other dataset, and vice versa, com
paring each subject’s RSFC pattern with the average control
and patient FC architecture. A group label was assigned to
each subject in the test dataset based on highest similarity
(to either patient or to control average in the training dataset).
Binomial tests showed 64% prediction accuracy (P < 0.000001)
for ADHD and ASD datasets (N = 147), with 52% sensitivity
and 77% specificity. The same analysis for Yale and COBRE
schizophrenia datasets (N = 108) resulted in 65% prediction
accuracy (P < 0.0001), with 68% sensitivity and 59% specificity.

Classification After Stringent (36 Parameter)
Motion Correction

To evaluate whether our alternative preprocessing approach
would affect the above classification results, we performed the
same classification analysis for the functional connectivity
data of the four groups preprocessed using “36P” nuisance
regression (see Methods for details). Overall, results for
the groups looked consistent with previous findings. The
ADHD classification resulted in 53% prediction accuracy for
ADHD, a 5% decrease compared with the initial results (with
58% sensitivity and 49% specificity). The ASD analysis re
sulted in 64% accuracy (48.7% sensitivity and 79.8% specificity),
the same accuracy as before, but with a lower ability to
correctly classify ASD patients as such. The Yale schizophre
nia data showed 72% accuracy (sensitivity 70.1% and speci
ficity 74.1%), that is, a 3% decrease in accuracy compared
with our previous classification anasysis, and a 67% accuracy
for the COBRE schizophrenia dataset (64.4% sensitivity, 69.5%
specificity), a 1% difference.

Discussion
The clinical neuroscience literature typically focuses on dis-
ease alterations in the functional connectome without putting
those alterations in their overall context. We took a more com-
prehensive view in the present study by comparing RSFC pat-
terns across the whole connectome, taking all connections into
account at once when comparing patients and healthy controls
across multiple mental disorders. By adopting such a whole-
brain view of functional network architecture, we aim to provide
informative new constraints on psychiatric theory, emphasizing
the role of small brain network changes in the negative life-
altering effects of mental illness. Supporting this new perspec-
tive, we used a connectome-wide similarity analysis to demon-
strate that—while being predictive of diagnosis—connectome-
wide RSFC patterns are very similar across patients and con
trols in a range of mental disorders and even across patient
groups.
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Large Overlap in Network Patterns Across Health and
Disease has Implications for Neurocognitive Theories
of Psychiatric Illness

The clinical RSFC literature to date has been so focused on show-
ing only cross-group differences that the results illustrated in
Figure 1—showing high cross-group similarity between patients
and healthy controls in ADHD, ASD, and schizophrenia—initially
appear to run counter to most publications in this area of
research. Critically, however, there is technically nothing con-
tradictory about these and prior results. These results sug-
gest that by ignoring or understating the baseline similarity
between groups, prior studies have been inadvertently present-
ing a biased view of psychiatric differences in brain network
organization.

The observed high similarity between patients and healthy
individuals has important implications for neurocognitive the-
ories of mental illness. This is principally due to the emphasis
on large-scale neurotransmitter disruptions in most psychiatric
theories. For instance, current theories suggest that schizophre-
nia may be caused by large-scale disruptions to the dopamine
system (Howes and Kapur 2009) or large-scale disruptions to
the glutamate system (Moghaddam and Javitt 2012). There are
similar theories with ASD involving glutamate (Purcell et al.
2001), acetylcholine (Perry et al. 2001), and serotonin (Jr et al.
1997). With ADHD, there are also similar theories involving
dopamine (Kirley et al. 2002), norepinephrine (Zimmer 2009),
and serotonin (Zepf et al. 2010). All of these neurotransmitter
systems are extremely widespread and critical to brain network
functionality (especially glutamate), such that these theories
most directly predict widespread alterations to functional brain
network organization.

The current results do not rule these theories out com-
pletely, however. Rather, these results constrain these theories
in important ways. It is possible that, for example, glutamatergic
functionality is disrupted widely in schizophrenia, but that the
disruption is minimal at each synapse. As evidence, for each
clinical group, even though the vast majority of connections
failed to individually differ from controls, the totality of dif-
ferences (t-values) did differ from controls. Alternatively, the
disruption could substantially alter very specific functionality
(such as timing of neurotransmitter binding) massively, with
minimal effect on functional network organization but perva-
sive effects on behavior. We leave full explanations of how the
present results might be compatible with observations support-
ing widespread neurotransmitter dysfunction in these mental
disorders to future work. For now, we emphasize the need for
future studies to shift their hypotheses to account for such small
functional network changes.

The present results are consistent with a recent study
that also found high similarity in brain network organization
between schizophrenia patients and healthy controls (Ler-
man-Sinkoff and Barch 2016). That study used community
detection to categorize each brain region with a community
label, then used several measures of categorical assignment
similarity to assess cross-group similarity. While useful in many
circumstances, community detection technically reduces infor-
mation by converting continuous weighted graph values into
discrete categories. Further, community detection algorithms
come with parameters and assumptions that can alter results
substantially. For these reasons, we focused on similarity mea-
sures that retained weighted graph information and involved
minimal parameters, facilitating a more comprehensive and

principled assessment of network organization similarity.
Despite these differences, the same conclusion was reached:
There are only minimal differences in large-scale functional
network organization between schizophrenia patients and
healthy controls.

In accounting for the small functional network changes
observed here, three possibilities seem prominent: (1) Most
patients actually have very similar cognition/behavior to healthy
individuals in aggregate (similar routines, basic abilities like
language, etc.), with high brain network similarity reflecting
how similar the cognition/behavior implemented by these
networks actually is. The possibility is supported by the common
observation of similar behavior across patients and healthy
individuals (relative to random behaviors). This conclusion
is also supported by the exclusion of, for example, the most
severe schizophrenia patients in fMRI studies (since they
cannot comply with experiment instructions). This predicts
that including severe cases of psychiatric illness would reduce
the similarity between patients and controls observed here.
Nonetheless, insofar as mental disorders are a matter of
classification (with the mildest positive cases defining the
threshold between positive and negative diagnoses), inferences
based on mild cases of a disorder are likely valid. Further,
less than 10% of schizophrenia patients are severe enough to
require institutionalization (Uggerby et al. 2011), suggesting the
number of patients unable to take part in these kinds of studies
due to psychosis severity is likely small. (2) Large changes
in cognition/behavior arise from small changes in functional
network organization. This idea is supported by the small
differences in functional network organization across highly
distinct cognitive/behavioral states. This high connectome-
wide similarity was observed in healthy young adults across
a wide variety of highly distinct tasks and resting state (Cole,
Bassett, et al. 2014a; Krienen et al. 2014). (3) RSFC does not
capture the effects of large-scale network disruption. This
possibility is unlikely, given the widespread RSFC changes
observed with pharmacological studies that experimentally
manipulate neurotransmitter functionality (Anticevic et al. 2012;
Klumpers et al. 2012; Scheidegger et al. 2012). It will nonetheless
be important to test this possibility using the connectome-
wide similarity approach used here. Notably, if connectome-
wide similarity remains high in such studies, this would also
have strong implications for neurocognitive theories of mental
illness, since it would suggest that the brain can exhibit small
functional network changes from widespread neurotransmitter
functional alteration. It is also worth considering that the
primary methodological issues with fMRI and RSFC are their lack
of specificity (e.g., whether a signal originated from excitatory
or inhibitory neurons) rather than lack of sensitivity (Logothetis
2008; van den Heuvel and Hulshoff Pol 2010; Ma et al. 2016;
Grandjean et al. 2017), suggesting that widespread functional
network disruption would very likely be detected with RSFC
with fMRI.

High Similarity in Resting-State Functional
Connectivity Patterns Between Mental Disorders

We also used connectome-wide similarity to compare connec-
tivity between clinical groups, finding that they were very sim-
ilar. The highest pattern similarity was found between ADHD
and ASD groups (with a shared variance of 92%). This result
is likely due in part to the data being collected at the same
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site, though even when comparing schizophrenia patients with
either ADHD or ASD patients shared variance was high at 83%.
Note that comparable similarity was also found for the cross-
diagnostic control subjects. However, the polygenic nature of
many mental disorders may also have contributed to highly
similar RSFC patterns in patients. A recent study found an asso-
ciation between certain cross-disorder polygenic risk factors for
mental disorders (ADHD, ASD, schizophrenia, bipolar disorder,
and major depressive disorder) and alterations in RSFC (Wang
et al. 2017). Furthermore, Sprooten et al. (2016) showed that cor-
tical regions implicated in several psychiatric disorders (based
on task fMRI studies) are very similar across diagnoses and are
thus largely diagnostic-general. The present results support this
possibility, extending it to include RSFC patterns shared between
psychiatric disorders.

Functionally Meaningful Alterations in Intrinsic
Functional Architecture of Patients

The RSFC literature has clearly described alterations in FC in
a variety of mental disorders, including those disorders cov-
ered in the current study. For example, schizophrenia—which is
characterized by severe cognitive impairment (Kahn and Keefe
2013)—has been shown to involve global disruption of prefrontal
cortex RSFC (Zhou et al. 2007; Cole et al. 2011; Anticevic et al.
2015). Overall, less integrated intrinsic brain networks and con-
nections with prefrontal cortex have been found in schizophre-
nia patients (for a recent review of RSFC studies and links to
cognition in schizophrenia, see Sheffield and Barch 2016).

In ADHD, RSFC changes in the frontoarietal network (FPN)
have been identified and associated with cognitive symptoms
like attentional control deficits, response inhibition deficits, and
impulsivity (Lin et al. 2015) (for a review of RSFC alterations in
ADHD see Posner et al. 2014). Further supporting the involve-
ment of FPN RSFC in ADHD, one study was able to predict
individual IQ scores (a reduction in IQ is strongly associated
with ADHD) based on FPN connectivity measures in children and
adolescents with ADHD (Park et al. 2016). Dysfunctional connec-
tivity of cognitive control networks such as FPN to the default-
mode network has also been implicated in ADHD (Castellanos
et al. 2008; Sun et al. 2012; Hoekzema et al. 2014). The extent to
which these changes represent fundamental alterations to brain
system organization remains unclear, however.

Patients with ASD show cognitive impairments in several
domains such as social cognition, language, attention, executive
function, and working memory (Baron-Cohen et al. 1985; Rogers
and Pennington 1991; Charman et al. 2011). RSFC studies have
indicated a variety of functional network changes associated
with ASD, with these changes including both overconnectivity
and underconnectivity in areas associated with the cognitive
impairments seen in ASD (for a review see Hull et al. 2017).

These RSFC alterations identified by previous studies might
seem to contradict our results indicating little differences
between patients and healthy controls. We therefore performed
a series of analyses to test whether the overall theme of prior
results (that there are reliable RSFC differences between patients
and control subjects) could be replicated in the data used here.
The results indicated that the whole-brain FC pattern can
be largely similar across patients and control subjects while,
simultaneously, there can be small but reliable RSFC alterations
consistent with the existing literature.

When testing all individual connections, alterations survived
correction for multiple comparisons—and with two different

motion correction methods—for the combined schizophrenia
groups, and thus showed the existence of deviant RSFC archi-
tecture in the current study. Interestingly, t-statistic pattern cor-
relations (Fig. 3a, connectome-wide patterns of unthresholded t-
test results) between mental disorders were significantly above
chance, indicating there is a shared component in the deviant
functional connections between disorders. Correlations were
largest between ADHD and ASD, and between the Yale and
Cobre schizophrenia datasets, which is likely a combined effect
of data collection site and diagnosis (note that there is high
comorbidity between ADHD and ASD (Leitner 2014)). Impor-
tantly, these results remained significant after regressing out
several covariates (age, gender, and education when available)
and were robust enough to withstand conventional and more
strict motion correction procedures.

Further reconciling the present results with the existing
clinical neuroscience literature, we used machine learning
to show that the small connectome-wide RSFC differences
between patients and healthy controls were nonetheless
predictive of clinical status. Specifically, we found above-
chance classifications of patients versus healthy controls in
all three clinical groups, based on connectome-wide similarity
of RSFC values. This resulted in 58% clinical status prediction
accuracy for ADHD, 64% for ASD, 75% for the Yale schizophrenia
dataset, and 68% for the COBRE schizophrenia dataset. These
percentages were slightly (1–5%) lower for each dataset than
the above-mentioned percentages but still above chance
when we applied our machine learning approach on the
“36P” motion corrected data, showing again the robustness
of these results. Notably, the connectome-wide similarity
differences used to make these predictions were quite small (see
Fig. 4), consistent with the small cross-group connectome-wide
similarity differences identified in the main results.

Together, these results further reconcile the current results
with the rest of the clinical RSFC literature, demonstrating
the utility of RSFC pattern changes despite the small overall
connectome-wide differences associated with the psychiatric
diseases investigated here.
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