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a b s t r a c t 

Visual shape completion recovers object shape, size, and number from spatially segregated edges. Despite being 

extensively investigated, the process’s underlying brain regions, networks, and functional connections are still 

not well understood. To shed light on the topic, we scanned (fMRI) healthy adults during rest and during a task 

in which they discriminated pac-man configurations that formed or failed to form completed shapes (illusory and 

fragmented condition, respectively). Task activation differences (illusory-fragmented), resting-state functional 

connectivity, and multivariate patterns were identified on the cortical surface using 360 predefined parcels and 

12 functional networks composed of such parcels. Brain activity flow mapping (ActFlow) was used to evaluate 

the likely involvement of resting-state connections for shape completion. We identified 36 differentially-active 

parcels including a posterior temporal region, PH, whose activity was consistent across 95% of observers. Sig- 

nificant task regions primarily occupied the secondary visual network but also incorporated the frontoparietal, 

dorsal attention, default mode, and cingulo-opercular networks. Each parcel’s task activation difference could 

be modeled via its resting-state connections with the remaining parcels ( r = .62, p < 10 − 9 ), suggesting that such 

connections undergird shape completion. Functional connections from the dorsal attention network were key in 

modelling task activation differences in the secondary visual network. Dorsal attention and frontoparietal con- 

nections could also model activations in the remaining networks. Taken together, these results suggest that shape 

completion relies upon a sparsely distributed but densely interconnected network coalition that is centered in 

the secondary visual network, coordinated by the dorsal attention network, and inclusive of at least three other 

networks. 
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. Introduction 

Visual shape completion plays a fundamental role in normal seeing,
xtracting object shape, size, position, and numerosity from the relative
lignments and orientations of spatially segregated edges. Converging
vidence from human and non-human primates suggests that the process
elies upon V4, LO, V2, and V1, with feedback cascading from the former
o the latter two regions. For example, transcranial magnetic stimulation
pplied earlier to LO (100-122 ms) or later over V1/V2 (160-182 ms)
orsened discrimination of completed shapes ( Wokke et al., 2013 ). Mul-

ielectrode array recordings of V4 revealed differential activity for com-
leted shapes within ~150 ms, which could plausibly precede low-level
isual activations ( Cox et al., 2013 ). In single-cell recordings, deep layer
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2 cells responded ~100 ms post-stimulus onset and deep layer V1 cells
esponded ~120-190 ms ( Lee and Nguyen, 2001 ). In addition to feed-
ack, long-range horizontal excitatory connections between V1 pyrami-
al cells also bolster edge integration ( Iacaruso et al., 2017 ). These four
egions —V1, V2, V4, and LO —have been termed the “classical ” regions
f shape completion ( Keane, 2018 ) given their inter-connectedness and
ell-established role in the process. 1 

What other regions participate in shape completion? At present
here is no consensus (M. M. Murray and Herrmann, 2013 ; Seghier and
uilleumier, 2006 ). Fusiform gyrus, V3A, and V3B/KO have been impli-
ated ( Mendola et al., 1999 ; M. Murray et al., 2002 ), although the last
1 Shape completion effects in IT ( Huxlin et al., 2000 ; Sáry et al., 2008 ) also 

ount as evidence for classical regions since this structure is a plausible LO ho- 

ologue ( Orban et al., 2004 ). 
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egion has been found mainly, but not exclusively, with dynamic illusory
ontour stimuli ( Kruggel et al., 2001 ). In a magnetoencephalography
MEG) study, adults passively viewing briefly-presented pac-man stimuli
30 ms) exhibited more orbitofrontal (OFC) activation relative to a con-
rol stimulus 340 ms post stimulus onset ( Halgren et al., 2003 ). The OFC
ffect has not been replicated perhaps because older fMRI studies had
oarser spatial resolution, more partial voluming, and thus more signal
rop-out near the sinuses (due to magnetic field inhomogeneities). Other
tudies reported activation in the frontal or posterior parietal cortices for
llusory “Kanizsa ” shapes, but in certain instances there was no control
ondition or the effects did not eclipse those found for a control condi-
ion ( Doniger et al., 2002 ; Foxe et al., 2005 ; M. M. Murray et al., 2004 ).
 more recent review of illusory contour perception did not report any
ole for frontal/prefrontal or frontoparietal cortex (M. M. Murray and
errmann, 2013 ). Finally, many of the studies that searched for shape
ompletion effects across cortex invoked MEG, EEG, or lower-resolution
RI, and thus had limited ability to locate activations with spatial pre-

ision. 
Another unanswered question pertains to the functional connections

nd large-scale networks of shape completion. A search of relevant key
erms on PubMed retrieved 892 items on shape completion but the list
windled to zero when either “functional connectivity ” or “functional
etwork ” was conjoined to the search. 2 Couching a process in terms of
ts encompassing network is useful. It allows for a better interpretation
f co-modulated regions that fall within that same network. It allows
unctional interactions to be understood in a larger context and moti-
ates further tests on how the networks interact. Finally, because net-
orks are much larger functional units and much more readily aligned
etween subjects, network-based results are easier to generalize across
ubjects ( Ji et al., 2019 ). 

There are good reasons to document the neural basis of shape com-
letion. The process is phylogenetically primitive and ontogenetically
arly, underscoring its importance for normal seeing ( Nieder, 2002 ;
alenza and Bulf, 2010 ). Moreover, shape completion deficits arise
uring brain injury ( Vuilleumier et al., 2001 ), developmental agnosia
 Gilaie-Dotan et al., 2009 ), sight restoration ( Ostrovsky et al., 2009 ),
nd neuropsychiatric illness ( Keane et al., 2019 ). Knowing the neural
asis of shape completion constitutes a first step for developing novel
harmacologic or stimulation-based interventions. 

We investigated the brain network mechanisms of shape comple-
ion with four task scans and one resting-state scan. Our ability to de-
ect effects was augmented by having used a higher spatial resolution
voxel = 2.4 mm iso) to reduce signal drop-out near the ventral surface,
 cortex-wide surface-based analysis to improve anatomical accuracy
 Glasser et al., 2013 ), and a parcellation scheme to non-arbitrarily seg-
egate cortex into a manageable number of functional units. In the task
cans, participants discriminated pac-man configurations that formed or
ailed to form visually completed shapes (illusory and fragmented condi-
ion, respectively) ( Ringach and Shapley, 1996 ). Shape completion was
perationalized as the difference in performance or activation between
he two conditions. This so-called “fat/thin ” task was chosen because
t has been extensively investigated via psychophysics, fMRI, EEG, and
MS and because it relies upon the classical brain regions just men-
ioned ( Gold et al., 2000 ; Keane et al., 2007 ; Maertens et al., 2008 ; M.
. Murray et al., 2006 ; Pillow and Rubin, 2002 ; Wokke et al., 2013 ). The

esting-state scan data allowed us to compute the resting-state functional
onnectivity (RSFC) matrix between all pairs of regions, which in turn
llowed us to assess the likely utility of the functional connections for
hape completion via a recent brain activity mapping procedure dubbed
ActFlow ” ( Cole et al., 2016 ). The ActFlow method estimates the actual
2 The terms were "illusory contours" OR “illusory contour ” OR "modal comple- 

ion" OR "subjective contours" OR “subjective contour ” OR "contour completion" 

R "perceptual completion" OR "visual completion" OR "contour interpolation" 

R "Kanizsa"; search date = 2/11/21 

(  

o  

c  

p  

t  

n  

2 
ask activation difference (illusory-fragmented) for a given target region
y taking the sum of all other task activation differences (in all other re-
ions) weighted by their functional connectivity strength to that target.
f the correlation between actual and estimated activation differences
s greater than zero across regions for a subject and if this correlation
s significantly above zero across subjects (evaluated via a t-test), then
he resting-state connections are likely involved in shape completion.
he ActFlow approach is justified since task and rest generate highly
imilar brain-wide functional connectivity ( Cole et al., 2014 ) and since
ntegrating RSFC into ActFlow has yielded accurate inferences of task-
voked activations in previous studies ( Cole et al., 2016 ). 

The results are described in six sections. First, we performed a task
ctivation analysis comparing the task conditions, with careful consid-
ration given to between-task difficulty differences. Second, null V1/V2
ffects in the univariate analysis motivated us to perform a post-hoc
ultivariate pattern analysis (MVPA) to probe for finer-grained task ef-

ects. Third, we divided the parcels into 12 different functional networks
 Ji et al., 2019 ) and quantified each network’s contribution to shape
ompletion by applying MVPA to parcel-wise task-activations. Fourth,
e determined the inter-connectedness of task regions by computing the

esting-state functional connectomes (RSFC matrices). Fifth, we demon-
trated the likely utility of these functional connections for shape com-
letion via ActFlow; that is, we showed that the task activation differ-
nce in each parcel could be inferred from the resting-state connections
o that parcel along with the task activation differences of the remain-
ng parcels. Finally, again using ActFlow, we determined which network
ontained the most informative resting-state connections for inferring
ifferential task activity in the secondary visual network (whose rele-
ance was established in Step 3) and in all remaining networks. This last
tep was done by adding each network individually to determine how
ctFlow inferences changed (improved). We conclude by suggesting the
xistence of a shape completion network coalition, which is seated in the
econdary visual network, is coordinated by the dorsal attention net-
ork, incorporates pieces of three other networks, and interacts with

arly visual areas at a vertex-wise spatial resolution. 

. Materials and methods 

.1. Participants 

The sample consisted of healthy controls who participated in a larger
linical study on the neural basis of abnormal visual perceptual orga-
ization in schizophrenia and bipolar disorder. These results are thus
onsidered a first step in identifying how the brain represents visually
ompleted shapes in health and disease. (Patient data collection is still
ngoing and will be reported once sufficient sample sizes are achieved.)
he sample comprised 20 psychophysically naïve participants (2 left
anded, 8 females) from the Newark, NJ (USA) area with an average
ge of 37.6 and a racial composition of 35% African American, 10%
sian, 35% Caucasian, 15% mixed, and 5% unknown. A quarter of the
articipants were of Hispanic ethnicity. To obtain a more representative
ample, we preferentially recruited controls without four-year college
egrees, so that the average number of years of education was 14.8. 

The inclusion/exclusion criteria were: (1) age 21-55; (2) no electro-
onvulsive therapy in the past 8 weeks; (3) no neurological or perva-
ive developmental disorders; (4) no drug dependence in the last three
onths (i.e., participants must not have satisfied more than one of the
1 Criterion A symptoms of DSM-5 substance use disorder in the last
hree months); (5) no positive urine toxicology screen or breathalyzer
est on the day of testing; (6) no brain injury due to accident or illness
e.g., stroke or brain tumor); (7) no amblyopia (as assessed by informal
bservation and self-report); (8) visual acuity of 20/32 or better (with
orrective lenses if necessary); (9) the ability to understand English and
rovide written informed consent; (10) no scanner related contraindica-
ions (no claustrophobia, an ability to fit within the scanner bed, and no
on-removable ferromagnetic material on or within the body); (11) no
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Fig. 1. Stimuli, trial sequence, and block arrangement for the visual shape comple- 

tion experiment . (A) Sectored circles (pac-men) were oriented to generate visually 

completed shapes (illusory condition) or fragmented configurations that lacked 

interpolated boundaries (fragmented condition). There were two difficulty con- 

ditions corresponding to the amount by which the pac-men were individually 

rotated to create the response alternatives. (B) After briefly seeing the target, 

subjects responded. (C) Each half of a run consisted of a fixation screen, a 5 sec- 

ond instructional screen, 25 trials of a single task condition (including 5 fixation 

trials), and then another fixation screen. 
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SM-5 diagnosis of past or current psychotic or mood disorders; (12) no
urrent psychotropic- or cognition-enhancing medication; (13) no first-
egree relative with schizophrenia, schizoaffective, or bipolar disorder
as indicated by self-report). 

.2. Assessments 

Psychiatric diagnosis exclusion was assessed with the Structured
linical Interview for DSM-5 (SCID) (APA, 2000; First et al., 2002). Intel-

ectual functioning of all subjects was assessed with a brief vocabulary
est that correlates highly ( r = 0.80) with WAIS-III full-scale IQ scores
Shipley et al., 2009, p. 65; Canivez and Watkins, 2010). Visual acuity
as measured with a logarithmic visual acuity chart under fluorescent
verhead lighting (viewing distance = 1 meters, lower limit = 20/10),
nd in-house visual acuity correction was used for individuals without
ppropriate glasses or contacts. Written informed consent was obtained
rom all subjects after explanation of the nature and possible conse-
uences of participation. The study followed the tenets of the Decla-
ation of Helsinki and was approved by the Rutgers University Institu-
ional Review Board. All participants received monetary compensation
nd were naive to the study’s objectives. 

.3. Experimental design and statistical analysis 

.3.1. Stimulus and procedure 

Participants performed a “fat/thin ” shape discrimination task in
hich they indicated whether four pac-men formed a fat or thin shape
 “illusory ” condition) or whether four downward-facing pac-men were
niformly rotated left or right ( “fragmented ” condition) (see Fig. 1 ). The
ragmented task is a suitable control in that it involves judging the lat-
ral properties of the stimulus —just like the illusory condition —and in
hat it uses groupable elements (via common orientation, Beck, 1966 ).
s described below, the two tasks share most stimulus and procedu-
al details (stimulus timing, pac-man features, spatial distribution, etc.).
ccordingly, the two tasks rely on many of the same processes: (1) learn-

ng two response alternatives from a limited number of practice exem-
lars and instructional screens (novel task learning); (2) transferring the
earned alternatives to long term memory (consolidation); (3) attend-
ng to four discrete spatial regions (divided attention); (4) continuously
onitoring the display over specific trial intervals (temporal attention);

5) capturing and extracting spatial information from briefly presented
rrays (visual short term memory); (6) discerning fine-grained orienta-
ion differences (orientation perception); and (7) repeating the forego-
ng processes over the task duration (sustained motivation) ( Keane et al.,
019 ). Perhaps because of all these similarities, the two tasks generate
imilar performance thresholds ( Keane et al., 2014 ) and are highly cor-
elated behaviorally ( Keane et al., 2019 ), which should not be taken for
ranted being that extremely similar visual tasks are often uncorrelated
ven with large samples ( Grzeczkowski et al., 2017 ). In sum, by hav-
ng employed a closely matched and already tested control condition,
e are in a position to identify mechanisms relatively unique to shape

ompletion. 
Subjects viewed the stimuli in the scanner from a distance of 99 cm

y way of a mirror attached to the head coil. There were four white
ectored circles (radius = .88 deg, or 60 pixels) centered at the vertices
f an invisible square (side = 5.3 deg, or 360 pixels), which itself was
entered on a gray screen (RGB: 127; see Fig. 3 ). Stimuli were initially
enerated with MATLAB and Psychtoolbox code ( Pelli, 1997 ) with anti-
liasing applied for edge artifact removal; images were subsequently
resented in the scanner via PsychoPy (version 1.84; ( Peirce, 2007 ) on
 MacBook Pro. Illusory contour formation depended on the geomet-
ic property of “relatability ” ( Kellman and Shipley, 1991 ): when the
ac-men were properly aligned (relatable), the illusory contours were
resent (the “illusory ” condition); when misaligned (unrelatable), they
ere absent ( “fragmented ” condition). 
3 
Within each of the four runs, there was one block of each task con-
ition, which has the advantage of heightening task-related activation
ifferences. In the illusory block, subjects indicated whether four pac-
en formed a fat or thin shape; in the fragmented block, subjects indi-

ated whether four downward-facing pac-men were each rotated left or
ight (see Fig. 1 ). Block ordering (illusory/fragmented or vice versa) al-
ernated from one run to the next. Each block had two difficulty levels,
orresponding to the magnitude of pac-man rotation ( + /- 10 degrees
easy ”, or + /- 3 degrees of rotation, “hard ”). Within each block, there
ere 20 task trials and 5 fixation trials. Half of the task trials were easy,
nd half were hard; half of these two trial types were illusory, and half
ere fragmented. The ordering of these trial types (including fixation)
as counterbalanced. Each trial consisted of a 250 ms pac-man stimu-

us (task trial) or 250 ms fixation dot (fixation trial), followed by a 2750
s fixation dot. Subjects needed to issue a response before the end of a

ask trial; otherwise, a randomly selected response was assigned at the
nd of that trial and the following trial ensued. Feedback was provided
t the end of each run in the form of accuracy averaged cumulatively
cross all test trials. 

Subjects received brief practice outside of and within the scanner
efore the actual experiment. During practice, subjects were reminded
rally and in writing to keep focused on a centrally-appearing fixation
oint for each trial. To ensure that subjects thoroughly understood the
ask, pictures of the fat/thin stimuli were shown side-by-side and in
lternation so that the differences could be clearly envisaged. Subjects
ssued responses with a two-button response device that was held on
heir abdomens with their dominant hand; subjects practiced with this
ame type of device outside of the scanner facility. Feedback after each
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rial was provided during the practice phase only ( “correct ”, “incorrect ”,
r “slow response ”). 

.3.2. fMRI acquisition 

Data were collected at the Rutgers University Brain Imaging Center
RUBIC) on a Siemens Tim Trio scanner. Whole-brain multiband echo-
lanar imaging (EPI) acquisitions were collected with a 32-channel head
oil with TR = 785 ms, TE = 34.8 ms, flip angle = 55°, bandwidth 1894
z/Px, in-plane FoV read = 211 mm, 60 slices, 2.4 mm isotropic vox-
ls, with GRAPPA (PAT = 2) and multiband acceleration factor 6. Whole-
rain high-resolution T1-weighted and T2-weighted anatomical scans
ere also collected with 0.8 mm isotropic voxels. Spin echo field maps
ere collected in both the anterior-to-posterior and posterior-to-anterior
irections in accordance with the Human Connectome Project prepro-
essing pipeline (version 3.25.1) ( Glasser et al., 2013 ). After excluding
ummy volumes to allow for steady-state magnetization, each experi-
ental functional scan spanned 3 min and 41 s (281 TRs). Scans were

ollected consecutively with short breaks in between (subjects did not
eave the scanner). An additional 10-minute resting-state scan (765 TRs)
ccurred in a separate session, with the same pulse sequence. Note that
ollecting multiband (rather than single-band) data allowed better de-
ection of structures along the ventral cortical surface (by minimizing
artial voluming) ( Merboldt et al., 2000 ; Smith et al., 2013 ). There is
lso evidence that —at least with some pulse sequences —multiband in-
reases the effective temporal signal-to-noise ratio (with its higher tem-
oral resolution) and improves the detection of group-level resting-state
nd task-evoked networks ( Bhandari et al., 2020 ). 

.3.3. fMRI preprocessing 

Preprocessing steps are highly similar to earlier studies ( Ito et al.,
017 ) but are repeated below. Imaging data were preprocessed using the
ublicly available Human Connectome Project minimal preprocessing
ipeline which included anatomical reconstruction and segmentation,
nd EPI reconstruction, segmentation, spatial normalization to standard
emplate, intensity normalization, and motion correction ( Glasser et al.,
013 ). All subsequent preprocessing steps and analyses were conducted
n CIFTI 64k grayordinate standard space. This was done for the parcel-
ated time series using the Glasser et al. (2016) atlas (i.e., one BOLD time
eries for each of the 360 cortical parcels, where each parcel averaged
ver vertices). The Glasser surface-based cortical parcellation combined
ultiple neuroimaging modalities (i.e., myelin mapping, cortical thick-
ess, task fMRI, and RSFC) to improve confidence in cortical area as-
ignment. The parcellation thus provides a principled way to parse the
ortex into manageable number of functionally meaningful units and
hereby reduce the number of statistical comparisons. Note also that
here are 97 newly-defined cortical areas in this parcellation, making it
ossible to identify entirely new shape completion regions. To conduct
 follow-up MVPA analysis within V1 and V2 (see Results), we also per-
ormed an otherwise identical preprocessing pipeline on the vertex-wise
ata. In all cases, we performed nuisance regression on the minimally
reprocessed task data using 24 motion parameters (6 motion parameter
stimates, their derivatives, and the squares of each) and the 4 ventricle
nd 4 white matter parameters (parameter estimates, the derivates, and
he squares of each) ( Ciric et al., 2017 ). For the task scans, global signal
egression, motion scrubbing, spatial smoothing, and temporal filtering
ere not used. Each run was individually demeaned and detrended (2
dditional regressors per run). 

The resting-state scans were preprocessed in the same way as the
arcellated task data (including the absence of global signal regression)
xcept that we removed the first five frames and applied motion scrub-
ing ( Power et al., 2012 ). That is, whenever the framewise displacement
or a particular frame exceeded 0.3 mm, we removed that frame, one
rior frame, and two subsequent frames ( Schultz et al., 2018 ). Frame-
ise displacement was calculated as the Euclidean distance of the head
osition in one frame as compared to the one preceding. 
4 
Functional and anatomical scans were visually inspected for qual-
ty. In addition, an MRI quality control package ( “MRIQC ”) and an ac-
ompanying random forest classifier were used to confirm that all T1
natomical scans were artifact free ( Esteban et al., 2017 ). (Two other
articipants, not included in our analyzed sample, had been flagged by
RIQC as having low quality T1 scans.) The mean framewise displace-
ent across scans before motion correction or scrubbing was remark-

bly similar in the visual completion and rest scans: 0.142 mm for visual
ompletion (averaged across scans) and 0.143 mm for rest. The average
umber of frames remaining after scrubbing for the rest scan was 696
range: 548-760]. 

For the task scans, there were 6 task regressors, one for each in-
tructional screen (illusory/fragmented) and one for each of the four
rial types (illusory/fragmented, easy/hard). A standard fMRI general
inear model (GLM) was fit to task-evoked activity convolved with
he SPM canonical hemodynamic response function (using the function
pm_hrf.m). Betas for the illusory and fragmented condition were de-
ived from all trials of the relevant condition across all four runs. For the
lassifier analyses, described below, task activation betas were derived
eparately for each run, but all other steps were the same as described. 

.3.4. Task activation and multivariate pattern analyses 

Analyses were performed with RStudio (Version 1.2.1335) and MAT-
AB R2018b. Cortical visualizations were created with Workbench (ver-
ion 1.2.3). There were eight parcels of a priori interest in each hemi-
phere. These ROIs have been given different names in different research
tudies (shown in parentheses) and are as follows: V1 (17, hOC1, OC,
A17), V2 (18, hOC2, OB, BA18), V4 (V4d, V4v, hV4, hOC4v, hOC4lp),
4t (LO2), LO1 (LO2, hOC4la); LO2 (LO1, hOC4la), LO3 (hOC4la), and
3CD (V3A,V3B, hOC4la) ( Glasser et al., 2016 , see p. 81 of Supplemen-

ary Neuroanatomical Results). Note that V3CD was included because
t corresponds to the anterior third of the middle and inferior lateral
ccipital gyri (area hOc4la as labeled by Malikovic et al., 2016 ). Statis-
ical correction, when applied, was via the False Discovery Rate (FDR)
ethod ( Benjamini and Hochberg, 1995 ). For the univariate task acti-

ation analysis, regions that were and were not of a priori interest were
eparately FDR-corrected. (Statistical correction is indicated explicitly
n the text below via p corr values). 

For the group-level task activation analyses, betas for each subject
ere derived for each parcel, averaged across difficulty condition, and

ubtracted (illusory-fragmented). These values were then compared to
ero across subjects with a one-sample t-test. As a control analysis, we
id the same as just described, except that we averaged across task con-
ition and contrasted the easy/hard conditions. As a further demonstra-
ion of the robustness of the univariate results, we performed individual
ubject parcel-wise task activation analyses for the illusory/fragmented
ontrast ( Table 1 ), using the subject’s estimated covariance matrix, task
etas, and MATLAB’s linear hypothesis test function (linhyptest). 

The location and role of each parcel was considered within the con-
ext of their functional network affiliations. We used the Cole-Anticevic
rain Network partition, which comprised 12 functional networks that
ere constructed from the above-mentioned parcels and that were
efined via a General Louvain community detection algorithm using
esting-state data from 337 healthy adults ( Ji et al., 2019 see Fig. 4 A).
his partition included: well-known sensory networks —primary visual,
econdary visual, auditory, somatosensory; previously identified cogni-
ive networks —frontoparietal, dorsal attention, cingulo-opercular, and
efault mode; a left-lateralized language network; and three entirely
ovel networks —posterior multimodal, ventral multimodal, and orbito-
ffective. (For a full list of parcels in the networks central to our anal-
ses, see Supplementary material.) This partition passed several quality
ontrol measures of stability and reliability, was biologically motivated
nd statistically principled, and was able to demonstrate increased lev-
ls of task activations at the network level. 

Multivariate pattern analyses were performed on the activation be-
as at two levels of spatial granularity. First, we examined whether 12
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Table 1 

Results for parcels that that were either of a priori interest or that were significant on the illusory-fragmented task activation analysis (see Fig. 2 ). The rows were 

sorted in descending order, first, by the percentage of subjects showing the effect in the group direction (column 2) and then, by the percentage of subjects showing 

significant effects on the individual subject analysis (column 3). The prefix of each parcel name ( “L_ “or “R_ ”) indicated its hemisphere. The fourth and fifth columns 

indicate a parcel’s ROI status (yes/no) and functional network. The next three columns indicate whether a parcel was significant after FDR correction, whether it 

remained significant when task conditions were matched on accuracy/RT, and whether it was significant using the predicted ActFlow data. In the final column, 

we show the average task activation difference, with more positive values indicating more illusory relative to fragmented activation. 

Parcel Name 

% With Difference In 

Group Direction 

% With Sig. 

Difference ROI? Network 

Sig. with FDR 

correction? 

Sig. with accuracy 

matching? 

Sig. with 

Act-Flow? 

Mean Beta Difference 

[95% CI] 

R_PH 95 80 0 Visual2 1 1 1 113.8 [77.6,150.1] 

L_MIP 95 65 0 Dorsal-attention 1 1 1 82.2 [43.7,120.6] 

R_V4 95 55 1 Visual2 1 1 1 46 [21.4, 70.7] 

L_IFJp 95 50 0 Frontoparietal 1 1 1 88 [50, 126] 

L_PH 90 80 0 Visual2 1 1 1 95.6 [66.1,125.1] 

R_6r 90 55 0 Cingulo-Opercular 1 1 1 56.4 [29.3, 83.4] 

R_a24 90 45 0 Default 1 1 1 − 47.6 [ − 69.7, − 25.5] 

L_V3CD 85 70 1 Visual2 1 1 1 76.2 [45.4, 107] 

L_IP1 85 65 0 Frontoparietal 1 1 1 65.7 [23.5,107.9] 

R_V3CD 85 65 1 Visual2 1 1 1 64.3 [29.3, 99.3] 

R_IP0 85 60 0 Dorsal-attention 1 1 0 75 [44.4,105.6] 

L_PFt 85 55 0 Dorsal-attention 1 1 1 62.2 [28.5, 95.8] 

R_PGi 85 55 0 Default 1 0 1 − 43.2 [ − 69.6,-16.8] 

L_LO1 85 45 1 Visual2 1 1 1 64 [34.3, 93.7] 

L_a24 85 45 0 Default 1 1 1 -52 [-77.1,-26.9] 

L_IP0 85 45 0 Dorsal-attention 1 0 1 64.2 [26.2,102.3] 

R_LO1 85 40 1 Visual2 1 1 1 55.2 [31.1, 79.4] 

R_TGd 85 40 0 Default 1 1 1 − 37.8 [ − 58.4, − 17.2] 

L_IP2 80 65 0 Frontoparietal 1 1 1 74.2 [30.3,118.2] 

L_11l 80 60 0 Frontoparietal 1 1 0 61.4 [32.2, 90.6] 

L_AIP 80 60 0 Dorsal-attention 1 1 1 78.1 [39.4,116.8] 

R_MIP 80 60 0 Dorsal-attention 1 1 1 81.1 [38.8,123.5] 

L_V3B 80 50 0 Visual2 1 1 0 54.9 [22.9, 87] 

R_LIPd 80 50 0 Dorsal-attention 1 1 1 79.3 [36.7, 122] 

L_V4 80 45 1 Visual2 1 0 1 40.3 [11.3, 69.3] 

R_IFJp 80 40 0 Frontoparietal 1 1 1 85.4 [36.5,134.2] 

R_d23ab 80 35 0 Default 1 0 1 − 58.3 [ − 92.9, − 23.6] 

R_LO2 75 45 1 Visual2 0 0 1 47.6 [6, 89.3] 

R_p9-46v 75 45 0 Frontoparietal 1 1 1 62 [29.1, 94.8] 

R_AIP 75 45 0 Dorsal-attention 1 1 1 59.4 [23.2, 95.5] 

L_IFSa 75 40 0 Frontoparietal 1 1 0 49.9 [22.3, 77.4] 

R_PHT 75 40 0 Dorsal-attention 1 1 1 51.5 [19, 84] 

L_FST 75 35 0 Visual2 1 0 1 45.5 [18.7, 72.3] 

L_TGd 70 45 0 Default 1 0 1 − 32.5 [ − 53.3, − 11.8] 

R_31pv 70 40 0 Default 1 0 1 − 58.5 [ − 95, − 22] 

L_LO2 70 35 1 Visual2 1 1 1 48.6 [21.5, 75.8] 

R_LO3 70 30 1 Visual2 0 0 0 21.9 [-13.2, 56.9] 

R_V4t 70 25 1 Visual2 0 0 0 15.4 [ − 21.5, 52.3] 

R_IP1 65 50 0 Frontoparietal 1 0 0 51.7 [20.5, 83] 

L_LO3 65 35 1 Visual2 0 0 1 24.2 [-13.3, 61.7] 

L_V2 65 20 1 Visual2 0 0 0 7.4 [ − 25.8, 40.5] 

L_V1 60 30 1 Visual1 0 0 0 9.9 [ − 22.8, 42.6] 

R_V2 60 25 1 Visual2 0 0 0 4.3 [ − 32.2, 40.7] 

R_V1 60 20 1 Visual1 0 0 0 5.5 [ − 28.9, 39.9] 

L_V4t 55 10 1 Visual2 0 0 0 − 2.2 [ − 34.7, 30.4] 
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ifferent functional networks could individually classify task condition
illusory vs fragmented) or difficulty condition (easy vs hard) using their
ithin-network mean parcel activations as features. Next, on a follow-
p post-hoc analysis, we examined, for each parcel, whether vertex-wise
ctivations could classify task condition. MVPA classification accuracy
n each case was assessed via leave-two-runs-out cross validation. For
xample, when classifying task condition for each participant, we exam-
ned whether the betas for each of the two left-out runs better correlated
o the illusory or fragmented betas averaged across the remaining runs.
ote that each run contained an equal number of trials from each of the

wo conditions, ensuring balanced condition types across test and train-
ng. Pearson correlation served as the minimum distance classifier (i.e.,
-r) ( Mur et al., 2009 ; Spronk et al., 2018 ). Results were averaged for
ach subject across the 6 possible ways to divide the four runs between
est and validation. Statistical significance was determined via permuta-
ion testing, which generated a null distribution of classification accura-
ies through the same procedure with 10,000 samples. That is, for each
5 
ample, the “illusory ” and “fragmented ” labels were shuffled for each
ubject and run, and the classification results were averaged across sub-
ects and across the 6 possible divisions of testing and validation data
ets. 

.3.5. Resting-state functional connectivity derivation 

We determined the resting-state functional connections for each par-
el. Specifically, for each target parcel time series, we decomposed the
ime series of the remaining (N = 359) parcels into 100 components, re-
ressed the target onto the PCA scores, and back-transformed the PCA
etas into a parcel-wise vector. The average amount of variance ex-
lained by the components across subjects was 84% [range: 81-88%].
he RSFC computation is equivalent to running a multiple regression
or each parcel, with all other parcels serving as regressors. An advan-
age of using multiple regression is that it removes indirect connections
 Cole et al., 2016 ). For example, if there exists a true connection from A
o B and B to C, a Pearson correlation, but not regression, would incor-
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ectly show connections between A and C. PC regression was preferred
ver ordinary least squares to prevent over-fitting (using all components
ould inevitably capture noise in the data). Aside from revealing the

unctional connectedness of task-modulated regions, the RSFC matrix
llowed an assessment of the utility of these connections for estimating
ask activation differences via ActFlow. 

.3.6. Activity flow mapping 

Fig. 6 illustrates how we used resting-state data to predict illusory-
ragmented task activation differences across cortex ( “Activity Flow
apping ” or simply “ActFlow ”). For each subject, the task activation dif-

erence in a held-out parcel (‘j’ in Fig. 6 A) was predicted as the weighted
verage of the activation difference of all other parcels, with the weights
iven by the resting-state connections. That is, for each subject, each
eld out region’s predicted value was given as the dot product of the
alues in the remaining regions (‘i’ in Fig. 6 A) and the subject’s restFC
etween j and i (using the FC weight from the appropriately oriented re-
ression, i.e., j as the target and i as the predictor). The accuracy of the
ctivity flow predictions was then assessed by computing the overlap
Pearson correlation) between the predicted and actual task activation
ifference vectors. Overlap was expressed by comparing actual and pre-
icted activation differences for each subject, and then averaging the
esulting Fisher-transformed r values (r z ) across subjects (subject-level
verlap). Statistical significance was determined by comparing the vec-
or of r z values to zero via a one-sample t-test. Overlap was expressed by
veraging the predicted values across subjects and then comparing that
o the averaged actual values, which will yield a single Pearson r value
group-level overlap). If a given RSFC matrix can be used to predict
ask activation differences, that would show that those same functional
onnections likely contribute to shape completion. Below, we applied
ctFlow once to the full RSFC matrix and once to the matrix involving
nly the task modulated regions. 

Since the secondary visual network was central to the shape comple-
ion network coalition, we also examined how ActFlow estimates im-
roved in that network, when any of the remaining four networks were
ndividually added ( Fig. 7 ). This change was determined simply by com-
aring via a paired t-test the prediction accuracies (correlations) before
nd after adding each network. A significant improvement would indi-
ate which other networks, if any, guide activity flow in the secondary
isual network. The success of the ActFlow method also prompted us
o also consider whether adding connections from any of the five task
odulated networks could improve ActFlow accuracy in the remaining
etworks. A significant improvement would indicate which other net-
ork, if any, explains differential activity in the remaining networks. 

. Results 

.1. Behavioral task performance 

Employing a 2 (task condition) by 2 (difficulty) within-subjects
NOVA (type III sum of squares), we found that performance was bet-

er in the fragmented than illusory condition (89.6% versus 82.9%,
 (1,19) = 14.8, p < .01) and better in the ( “easy ”) large-rotation condition
han the ( “hard ”) small-rotation condition ( F (1,19) = 133, p < 10 − 9 ) (See
upplementary Fig. S1 for graphical depiction of the behavioral results).
he accuracy difference between illusory and fragmented conditions
id not depend on difficulty level, although there was a trend toward
 greater difference on the smaller rotation condition (two-way inter-
ction: ( F (1,19) = 3.6, p = .07). The marginal interaction probably arose
rom ceiling effects for the fragmented condition since there was no cor-
esponding interaction in the reaction time data ( F (1,19) = .14, p = .7).
eaction time data where in other ways entirely predictable from the
ccuracy results, with faster performance in the fragmented than the
llusory condition ( F (1,19) = 5.1, p = .04), and faster performance in the
asy than the hard condition ( F (1,19) = 21.3, p < .001). The no-response
6 
rials were infrequent, occurring on only 5.5% of the trials on aver-
ge. The frequency of no-response trials did not vary with difficulty
evel or task condition nor was there an interaction between difficulty
nd task condition ( ps > .25). Consistent with past results ( Keane et al.,
019 ), the fragmented and illusory conditions were highly correlated
accuracy —r = .74, p < .001; RT —r = .81, p < .0001), confirming that they
ere reliant upon a common core of mechanisms. The correlations were

obust and remained significant when calculated with non-parametric
ests or after log-transforming the RT data. 

.2. Shape completion effects across five large-scale functional networks 

A general linear model task activation analysis determined the
arcels that were differentially active in the illusory versus fragmented
ondition. Overall, 36 parcels reached significance in five different net-
orks ( Table 1 ; Fig. 2 ). Of these parcels, 29 (81 percent) were more ac-

ivated for illusory relative to fragmented trials ( Fig. 2 ). A priori ROIs,
hen significant, were all more active relative to the control condition;

hese include bilateral V3CD, V4, L01, and left L02. With the excep-
ion of left V4, the ROI effects were robust enough to survive a cortex-
ide FDR correction. Notable null results were V2 and V1 which will
e discussed further below. Additional positively and significantly acti-
ated regions resided in the posterior parietal, dorsolateral prefrontal,
nd orbitofrontal regions; they belonged primarily to the secondary vi-
ual, dorsal attention, and frontoparietal networks. All seven of the re-
ions that were negatively activated in the illusory-fragmented contrast
elonged to the default mode network. Note that this finding reflects
his network’s established on-task deactivation profile ( Anticevic et al.,
012 ), i.e. greater deactivation for the illusory relative to the fragmented
ondition, consistent with greater task engagement in the illusory con-
ition. 

Because task difficulty was greater in the illusory task, perhaps task
ifficulty, rather than shape completion, drove the effects just described.
e addressed this concern in three ways. First, we performed a contrast

omparing activation in the easy versus hard trials, averaged across task
onditions. To make the results comparable to before, FDR correction
as applied separately to regions that were and were not ROIs. We found
1 parcels that were differentially active, but only eight overlapped with
he illusory-fragmented contrast (see Fig. 3 ). Five of these parcels were
ess active in both the hard-easy and illusory-fragmented comparisons,
nd all belonged to the default mode network: bilateral a24, right d23ab,
ight 31pv, and right PGi. Three parcels were more active in both con-
rasts (bilateral IFJp, left MIP). None of the 16 ROIs of visual shape com-
letion were related to task difficulty. Thus, on this analysis, while the
bove-mentioned eight parcels were confounded with task difficulty, the
emaining 28 significant parcels in the illusory/fragmented comparison
ere not confounded. 

To further assess the extent to which task difficulty might account
or the aforementioned shape completion effects, we ran an additional
nalysis that was restricted to the 10 participants who did the best in the
llusory relative to the fragmented condition, so that there was no longer
n accuracy difference ( t (9) = -0.443, p = 0.669, Mean difference in pro-
ortion correct = -0.011). In this sample, there was also no reaction time
ifference between task conditions ( t (9) = 1.63, mean RT difference = -.06
econds, p = .14)). As shown in Table 1 , with the exception of left V4, the
OIs that were significant in the earlier analysis remained significant in

his restricted sample; these include L01 and V3CD in each hemisphere,
eft LO2, and right V4 (all p < .05, uncorrected). Of the eight regions that
ere significant on both the hard/easy and illusory/fragmented con-

rast, five remained significant (left MIP, bilateral a24, bilateral IFJp)
nd are thus are more plausibly independent of task difficulty. The fore-
oing results were about the same if either 9 or 11 participants were
ncluded in this accuracy-matched analysis (See Supplementary mate-
ials). Other regions that continued to be significant on this accuracy-
atched analysis are shown in Table 1 . 
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Fig. 2. FDR-corrected activation difference amplitudes (Z-normalized) for all parcels for the illusory – fragmented contrast. ROIs are shown with black outlines. The 

anterior and posterior views are shown laterally; the dorsal and ventral views are shown at the top and bottom. Hot colors indicate regions that were more active 

for the illusory versus fragmented task; cool colors indicate the reverse. 

Fig 3. Task activation differences for hard - easy trials (collapsed across illu- 

sory/fragmented). Opposite to the illusory-fragmented contrast, we found that 

harder trials generally elicited less activation throughout the brain relative to 

easier trials and the location of these significant activations overlapped little 

with the activations shown in Fig. 2 . The illusory/fragmented a priori ROIs 

(black outlines) are shown for comparison purposes only and did not contain 

significant parcels. 
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7 
Finally, we considered whether —across all subjects —there were sig-
ificant correlations between relative accuracy differences (illusory vs.
ragmented) and relative task activation differences. None of the 360
orrelations survived FDR correction (all |r| < .48, all p > .03, before mul-
iple comparison correction) suggesting again that the relative perfor-
ance differences did not play a large role in driving our parcel-wise

ffects. 
To examine the robustness of the task activation effects, we addi-

ionally report the percentage of subjects showing significant effects
illusory-fragmented) in the group direction on an individual subject
nalysis (with a linear hypothesis test, see Methods). This was done for
egions that were significant on the task activation analysis as well as for
ther regions that were of a priori interest. As can be seen from Table 1 ,
bout 80% of subjects showed activation differences in the group di-
ection (ranging from 65-95%, depending on the parcel) and about half
f subjects (35 - 80%) showed effects that were statistically significant.
ntriguingly, the posterior temporal region PH–which was not of a pri-

ri interest —was most associated with shape completion, with 80% of
ubjects showing a significant effect in the left and right hemispheres,
nd at least 90% showing group differences in each hemisphere in the
roup direction. This region’s surprising role in shape completion will
e discussed further below. 
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.3. Probing for multivariate traces of shape completion in early visual 

reas 

Task activation analyses did not reveal shape completion effects
n V1 or V2. Because a region could conceivably encode a completed
hape in its vertex-wise pattern rather than in its univariate mean
 Haynes, 2015 ), we performed MVPA on vertices within these parcels.
or completeness, we considered effects within all 360 parcels. The
ollowing were significant: L_LO2 ( p = .02, accuracy = 58%), L_V3CD
 p = .04, accuracy = 58%), R_V4 ( p = .049, accuracy = 56%), R_LO1 (p = .03,
ccuracy = 57%), and R_LO3 ( p = .04, accuracy = 56%). These effects were
ot corrected for multiple comparisons but are credible given the strong
rior evidence for their involvement (see Introduction). Outside of the
OIs, the only region that was significant after FDR correction was
_PGp ( p corr < .0001, accuracy = 66%). Given the hemispherically simi-

ar task activations and the bilateral stimulus displays, we performed
he same analysis as above, except that vertices were aggregated (with-
ut averaging) across hemisphere to increase sensitivity. The effects
ere similar to before with effects for: V4 ( p = .02, accuracy = 58%), LO2
 p = .02, accuracy = 57%), and V3CD ( p = .04, accuracy = 56%). There was a
arginal effect for V1 ( p = .09, accuracy = 55%). For regions that were not

f a priori interest, the following reached significance after FDR correc-
ion: PGp (p corr = .04, accuracy = 60%) in the secondary visual network;
IP and IP0 in the dorsal attention network (p corr = .04, accuracy = 61%;
 corr = .04, accuracy = 61%, respectively); and IP1 in the frontoparietal
etwork (p corr < .001, accuracy = 63%). In sum, neither V1 nor V2 exhib-
ted a robust vertex-wise shape completion effect; however, several ROIs
V4, LO2, V3CD), several other univariate, task-activated regions (e.g.,
P1), and a new region, PGp, were consistently significant on this anal-
sis. Possible reasons for null effects are considered in the Discussion. 

.4. A dominant role for the secondary visual network in shape completion 

As shown in Fig. 4 , most significant parcels resided in the secondary
isual network, followed by the dorsal attention, frontoparietal, default
ode, and cingulo-opercular networks. To better quantify the network

ontributions and compare them to one another, we trained MVPA clas-
ifiers separately for the 12 functional networks ( Ji et al., 2019 ), us-
ng parcel-wise activations as features (see Methods). After FDR correc-
ion (across tests for the 12 networks), the secondary visual network
ould distinguish the illusory and fragmented conditions at a rate above
hance (p corr < .001, accuracy = 63%), but no other network could do so
all p corr > .24, accuracies < 57%). Paired t-tests showed that, after FDR
orrection, the secondary visual network was marginally more predic-
ive than 8 of the remaining 11 networks (all p corr ≤ .10). Note that there
as no correlation between network classification accuracy and parcel

ount ( r = .05, p = .88), suggesting that smaller networks were not unduly
andicapped. 

.5. Modulated task parcels were densely inter-connected during rest 

To determine how modulated task regions were functionally inter-
onnected, we derived a whole-cortex RSFC matrix with Pearson corre-
ation (which is more commonly reported) and then with multiple re-
ression ( Fig. 5 A,B; see Methods). We then homed in on the significant
ask regions that remained significant when the illusory/fragmented
onditions were matched on accuracy/RT. Since the task activations
ere hemispherically symmetric, contralateral homologues were in-

luded so that there was a 42 × 42 RSFC matrix. The betas from the
egression-based RSFC matrix were compared to zero for each connec-
ion across subjects (one sample t-test) and were FDR-corrected (thresh-
lded) across all connections ( Fig. 5 C). An assessment of Fig. 5 C shows
hat parcels had higher within- than between-hemisphere RSFC (210
ersus 169 significant connections), a greater proportion of signifi-
ant cross-hemisphere versus within-hemisphere connections for sen-
ory (visual) than for non-sensory networks (93% versus 33%, excluding
8 
onnections between parcels and their controlateral homologues), and
igher RSFC between parcels and their contralateral homologues than
ith other contralateral regions. These results are consistent with past
ork ( Power et al., 2011 ; Stark et al., 2008 ) and demonstrate that the
SFC matrices were yielding sensible results. 

A major question was whether the significantly modulated task re-
ions were inter-connected during rest. After applying FDR corrections
o each matrix separately, we found that the restricted RSFC matrix
42 × 42) contained three times as many significant resting-state connec-
ions as the full (360 × 360) matrix, (43% versus 14%). To put this in per-
pective, two of the twelve resting-state networks —default mode and or-
itoaffective —had a lower proportion of significant within -network con-
ections (35% and 25%, respectively). This suggests that the significant
ask regions, despite falling within five different networks, composed a
ensely inter-connected network coalition or supra-network. Note that
hese five networks, as a whole, were not unusually connected to one
nother: If all regions from all 5 networks were included in the above
alculations (to form a 260 × 260 RSFC matrix), the total number of
ignificant resting state connections would still only be 17%. Thus, it is
he specific regions within these five networks that appear to be more
nterconnected during rest. 

To examine these results in a different way, we examined for each
ubject the average within- network connection weight and the av-
rage out-of-network connection weight across the 42 task parcels
where “network ” consisted of just these parcels), and simply com-
ared these two averaged weights across subjects. Shape completion
egions cohered more strongly with one another than with other re-
ions ( t (18) = 22.6, p < 10 − 13 , d = 8.0; within: M = .0088, SD = .0012; be-
ween: M = .0019, SD = .00016). 

The RSFC matrices offers clues as to how the regions were communi-
ating. As can be observed from Fig. 5 D, the secondary visual network
ost often connected to the dorsal attention network regions, which in

urn had the most significant out-of-network connections (168 connec-
ions). Moreover, there appear to be a number of routes between frontal
ortex and the mid-level vision ROIs. Dorsal lateral prefrontal cortex
p9-46v) connects with MIP, IP0, and IP2 (in posterior parietal cortex),
hich in turn connect with all of the significant ROI regions. Intrigu-

ngly, area 11l (OFC) connected directly with area LO2. Hence there ex-
st clear routes for conceptual or value-laden information to loop back
nto areas traditionally associated with shape completion, but in most
ases these routes must traverse the dorsal attention network and par-
icularly parts of posterior parietal cortex. 

.6. Resting-state connections are relevant for visual shape completion 

We have shown that regions that were differentially activated dur-
ng visual shape completion were also connected during rest. However,
espite some indirect evidence from other work (see Introduction), it re-
ains unclear whether these connections in these same subjects played
 mechanistic role in shape completion. To address the question, we
everaged a recently-developed predictive modeling approach —activity
ow mapping ( “ActFlow ”) —to assess whether the resting-state connec-
ions (derived via multiple regression) were likely instrumental in car-
ying the flow of activity between regions during task performance
 Cole et al., 2016 ). In this method, the activation difference (illusory
inus fragmented) in a held-out “target ” parcel was computed as the

inear weighted sum of the activation differences in all other parcels,
ith the weights being given by the resting-state connections to the

arget (see Fig. 6 a). This can be thought of as a rough simulation of the
ovement of task-evoked activity between brain regions that likely con-

ributed to each brain region’s task-evoked activity level. This allowed
s to assess whether the observed resting-state connections mechanis-
ically supported the perceptual processes associated with shape com-
letion. Prediction accuracy was gauged as the correlation between the
ctual and predicted activation differences. As can be seen in Fig. 6 B,
he predictions were highly significant at the whole-cortex level ( r = .64,
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Fig. 4. (A) The Cole-Anticevic Brain Network par- 

tition. We considered whether parcel-wise activa- 

tion patterns in the cortical networks could individ- 

ually classify task betas as deriving from the illu- 

sory or fragmented condition; these included the pri- 

mary visual, secondary visual, somatomotor, cingulo- 

opercular, dorsal attention, language, frontoparietal, 

auditory, default, posterior multimodal, ventral mul- 

timodal, and orbito-affective networks. Networks are 

color coded to match the parcels in panels B and 

C. (B) The percentage of significantly modulated 

parcels that belonged to each network for the illu- 

sory/fragmented contrast. (C) Classification accuracy 

for the illusory/fragmented comparison. The red dot- 

ted line shows chance performance, the box segments 

denote median scores, the box hinges correspond to 

the 25th and 75th percentiles, and the box whiskers 

extend to the largest or smallest value (but no fur- 

ther than 1.5x the interquartile range). Only the sec- 

ondary visual network could significantly predict il- 

lusory/fragmented activations ( ∗ ∗ ∗ p corr < .001). (See 

Supplementary materials for the exact parcels incor- 

porated by this network). 
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 < 10 − 9 ). If we were to first average the predicted differences across sub-
ects, then average the actual differences across subjects, and then corre-
ate the two, the resulting group-level accuracy estimate would increase
 r = .89), probably by increasing the signal-to-noise ratio ( Cole et al.,
016 ). 

We next applied a task activation analysis to the ActFlow predicted
ata (via one-sample t-tests, as before) and compared the results to the
riginal task activation results (shown in Fig. 2 ). The percentage of
arcels that remained significant (sensitivity) with ActFlow was 86%;
he percentage of non-significant parcels that remained non-significant
specificity) was 81% (see Fig. 6 C). These results again suggest that the
bserved resting-state connections describe the routes over which task-
voked activity flows during shape completion (controlling for orienta-
ion judgement). 

To assess the relevance of resting-state connections between regions
hat were modulated during the task, we restricted activity flow map-
ing only to those regions and their contralateral homologues. To mini-
ize the chance of task difficulty effects, we again used only regions that

emained significant when conditions were matched on accuracy/RT so
hat each held-out parcel’s activation was predicted by 41 other con-
ections/parcels. Despite eliminating 89 percent of the connections for
ach parcel, the prediction accuracy estimates (r-values) across subjects
ere still high (illusory-fragmented: r = .61, p = 3.0 ∗ 10 − 9 ) and did not sig-
ificantly differ ( p = .28) from the ActFlow correlations with the full ma-
rix (as assessed with a paired t-test). This suggests that much of shape
ompletion can be understood by only examining the connections and
ctivations of task modulated regions. 

.7. Dorsal attention regions can model activity flow in the secondary 

isual network 

According to the task activation and network-wise MVPA results
 Table 1 and Fig. 4 , respectively), shape completion was most under-
9 
irded by the secondary visual network. To examine which other net-
orks might plausibly contribute to the illusory/fragmented activation
ifferences in this network, we determined which ones could improve
he ActFlow predictions, using the same significant task regions as be-
ore (see Fig. 6 ). More explicitly, for each subject, we computed a sin-
le correlation between the actual and ActFlow parcel difference values
cross the 12 significant secondary visual network parcels. We then re-
omputed this correlation, when each of the 12 parcels could also be
redicted by parcels and connections from one other network. Finally,
e Fisher-z transformed the correlations, subtracted the two, and then
erformed a one-way t-test to see if the correlations increased as a result
f the network’s inclusion. The dorsal attention network improved the
redictions for the secondary visual network ( Δr ≈Δr Z = .37, p corr = .01);
o other network generated a significant effect. The improvement from
he dorsal attention regions were significant also if we were to use all
60 regions and all possible resting-state connections (rather than re-
tricting to the significantly activated regions ( Δr ≈Δr Z = .11; p corr = .04).

.8. Dorsal attention and frontoparietal regions can model activity flow 

cross all remaining networks 

Is there a particular network that plays a dominant role in orches-
rating the activity of the other regions? We examined this possibil-
ty by using the same approach as just described; that is we calcu-
ated, for each subject, the ActFlow accuracy for all regions outside of a
eld-out network and considered how that accuracy improved —that is,
ow the Fisher-Z correlations increased ( Δr Z ) —when the held-out net-
ork regions were allowed to contribute ( Mill et al., 2020 ). This was
one for each of the five networks, using only the significant task re-
ions (viz., 42 regions were treated as targets for ActFlow in Fig 6 A).
onsistent with observations from the functional connectivity matrix,
he dorsal attention network significantly improved inferences for the
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Fig. 5. Resting-state functional connectivity (RSFC) matrices . (A) Pearson correlation between the resting-state time series of all parcel pairs (360 × 360 parcels). Parcels 

are sorted into previously established (color-coded) functional connectivity networks ( Ji et al., 2019 ) (see also Fig. 4 A). The block-like structure along the diagonal 

exemplifies the stronger connectivity within relative to between each network. (B) An RSFC matrix computed via multiple regression (see Methods). The blue/red 

colors indicate the degree to which a given parcel time series was predicted by all remaining parcels. Note that this matrix is much sparser than the correlational 

matrix since it eliminates many of the indirect connections between parcels ( Cole et al., 2016 ). (C) Thresholded (FDR-corrected) resting-state connections between 

significantly modulated task regions (see text), which are ordered first by hemisphere and then by network. Compared to the full matrix in panel B, this pared down 

matrix had about 1 percent the number of possible connections (matrix elements) and triple the proportion of (FDR-corrected) significant connections. (D) Averaging 

the connection weights across hemisphere increased the proportion even further (from 43% to 60%), highlighting the broadly symmetric connectivity patterns. Note 

that one parcel, IFSa, was split between the frontoparietal (left hemisphere) and cingulo-opercular networks (right), and was assigned to the frontoparietal network 

in this plot since only the frontoparietal parcel was significant in the task activation analysis. 
10 
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Fig. 6. Activity flow mapping for visual shape completion . (A) For each subject, the task activation differences (illusory-fragmented) in a held-out parcel (j) is given 

by the dot product between the activation differences in the remaining parcels (regions i) and the resting-state connection strengths (betas) between i and j. (B) 

Unthresholded z-normalized activation differences (illusory – fragmented) as compared to those that were predicted via ActFlow using resting state. (C) When a task 

activation analysis was applied to the data predicted from ActFlow, statistical significance (or lack thereof) was correctly determined for 82% of the 360 parcels (see 

also Fig. 2 ). This suggests that the connection weights derived from resting state were reflective of the actual connections used during shape completion. 
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ignificant regions within the remaining four networks ( Δr ≈Δr Z = .10;
 (18) = 3.84, p corr = .006). The frontoparietal network issued a somewhat
eaker but still detectable effect ( Δr ≈Δr Z = .06; t (18) = 2.83, p corr = .03).

nterestingly, the other three networks —including the secondary vi-
ual —failed to influence the results on this analysis (all p corr > .6). The
mprovement from the dorsal attention regions and frontoparietal re-
ions would also be significant if we were to use all 360 regions and all
ossible resting-state connections (rather than restricting to the signif-
cantly modulated regions; dorsal attention: Δr ≈Δr Z = .03; t (18) = 3.55,
 corr = .007; frontoparietal: Δr ≈Δr Z = .05; t (18) = 4.55, p corr = .002). 
11 
. Discussion 

Visual shape completion plays a critical role in extracting object
hape, size, position, and number from edge elements dispersed across
he field of view. The process relies on lateral occipital and early visual
reas, but it is unclear what other regions might be utilized, how they are
unctionally connected, or what networks they reside within. To shed
ight on the foregoing, we scanned participants during rest and during a
ask in which they discriminated pac-man quartets that either formed or
ailed to form visually completed shapes. Six major findings emerged.
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Fig. 7. Gauging contributions of the dorsal attention network to the secondary visual network (Visual2) . (A) For a given subject, task activation differences for each 

significant Visual2 parcel were estimated (dotted circles) using actual task activation differences in the remaining parcels (solid circles) and their resting-state 

connections (red lines). For illustration purposes, only one hemisphere is shown. (B) ActFlow accuracy was defined as the correlation between actual and estimated 

task activation differences, across the Visual2 parcels. (C) Task activation differences were again estimated via ActFlow, except that, this time, the connections and 

activation differences from the significant dorsal attention regions could also contribute. (D) The difference between the original and re-calculated estimates was 

computed for each subject (after a Fisher Z-transform) and compared to zero across subjects. Only the dorsal attention network could significantly improve ActFlow 

estimates in the secondary visual network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ne is that although only a few dozen parcels were differentially acti-
ated, the effects were impressively consistent, with one region —parcel
H —exhibiting similar effects across 90-95% of subjects in each hemi-
phere. Next, the secondary visual network played a dominant role in
hape completion but parcels within the dorsal attention, frontopari-
tal, and default mode, and cingulo-opercular network were also influ-
ntial, suggesting that shape completion is a distributed process. Third,
ask-activated parcels were highly connected during rest, being signif-
cantly more connected to one another than to other regions. Fourth,
esting-state connections could accurately predict illusory/fragmented
ask activation differences via ActFlow, which implies that these same
onnections were employed for shape completion. Fifth, dorsal attention
 p  

12 
egions could model activity in the secondary visual network, and across
ll remaining networks, indicating that this network may orchestrate
ctivity across cortex during shape completion. Finally, frontoparietal
ortex appears to globally coordinate activity during shape completion
s well. Below, we discuss these findings in more detail, provide a sketch
f how these regions might interact during shape completion, identify
otential limitations, and suggest future directions. 

.1. The role of visual networks in shape completion 

The secondary visual network played a central role for shape com-
letion. It contained 31 percent of all significantly activated parcels and
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he parcel-wise task activation differences in this network —but not oth-
rs —could classify task condition. A priori regions of interest —V4, LO1,
O2, V3CD —were all significant in at least one hemisphere on the task
ctivation analysis; V4, LO2, and V3CD were each significant in at least
ne hemisphere on the vertex-wise MVPA analysis. Significant visual
arcels were categorically more active in the illusory than fragmented
ondition without regard to accuracy and were spatially contiguous on
he lateral surface (see swath of purple in the lateral views of Fig. 4 A),
uggesting that shape completion could potentially be augmented by
ranscranially stimulating this network. Such interventions could po-
entially treat conditions that impair shape completion such as devel-
pmental agnosia (deactivated mid-level visual areas), schizophrenia,
rain injury (infarct/hemorrhage), or recent recovery from congenital
lindness (cataract removal) ( Gilaie-Dotan et al., 2009 ; Keane et al.,
019 ; Ostrovsky et al., 2009 ; Vuilleumier et al., 2001 ). 

There was no robust MVPA or task activation result for V1 or V2.
 likely reason is that —according to a population receptive field map-
ing approach ( Kok and de Lange, 2014 ) —the illusory shape surface
egion (corresponding to a portion of V1 vertices) is more activated in
1 relative to baseline and the inducer (pac-man) regions are less acti-
ated. A similar result was reported for V2. Therefore, averaging across
hese two retinotopic region types will reveal no changes in overall ac-
ivity nor will MVPA be revelatory when individual voxels are respond-
ng to both the inducer and the shape regions simultaneously. This may
lso explain why, historically, the methods with the highest spatial res-
lution were those that provided the most convincing evidence for il-
usory contour formation in V1 and V2 ( Grosof et al., 1993 ; Kok and
e Lange, 2014 ; e.g., Lee and Nguyen, 2001 ) and why many lower-
esolution neuroimaging studies have often failed to find effects at this
evel ( Seghier and Vuilleumier, 2006 ). For example, a study using the
at/thin discrimination task with 3 mm voxels found no modulation of
arly visual areas ( Stanley and Rubin, 2003 ) whereas a behaviorally
imilar study using 2 mm voxels and a surface-based analysis revealed
ffects ( Maertens et al., 2008 ). Another implication of the population
eceptive field result is that larger stimuli will make it easier to distin-
uish up- and down-regulated retinotopic regions. Again, the data speak
o this possibility: We used illusory shapes that were 5 degrees on a side,
tanley and Rubin used stimuli 5 degrees on a side, but Maertens et al
sed squares that were 7.4 deg on a side. Therefore, higher resolution
MRI and larger illusory shapes, may be needed to better bring effects
ore fully within V1 and V2. 

.2. Area PH: A potential “classical region ” for shape completion and a 

ink to reading 

Area PH is a recently re-defined region in the posterior temporal
ortex, corresponding to the superior part of PH in the von Economo
nd Koskinas atlas ( Glasser et al., 2016 ; Triarhou, 2007 ); it is not com-
only reported in the neuroimaging literature and was not of a priori

nterest. Nevertheless, in our study it was the most consistently active
arcel across subjects (when considering both hemispheres), the most
requently significant parcel within subject, and the most densely con-
ected task-modulated visual parcel, communicating directly with lat-
ral occipital cortex (V3CD), consistent with past research ( Glasser et al.,
016 ). In light of these results, PH should be considered a candidate
classical region ” for shape completion along with other more recog-
ized areas such as lateral occipital cortex. Strong activation of PH could
lso explain why the fusiform face area has been occasionally reported
n past studies of shape completion ( Halgren et al., 2003 ; Larsson et al.,
999 ) since PH is immediately bordering the fusiform face complex and
ince signal leakage or improper delineation of PH would inevitably re-
ult in false positives. Finally, PH has been considered by some to be the
est atlas-based alternative to the functionally-defined visual word form
rea (VWFA; Weiss et al., 2019 ). The VWFA has been shown to have high
unctional connectivity to the dorsal attention network ( Vogel et al.,
012 ). Consistent with this finding, we showed that area PH was sig-
13 
ificantly connected to task-modulated dorsal attention regions in each
emisphere (MIP, LIPd, PFt, AIP, PHT, IP0); Fig. 5 C). An interesting pos-
ibility is that visual shape completion ability may be compromised in
hose with dyslexia ( Monzalvo et al., 2012 ) and may correlate with read-
ng skills in non-clinical populations. A related possibility is that area PH
ay help explain why people with schizophrenia exhibit both reading

 Revheim et al., 2014 ) and completion deficits ( Keane et al., 2019 ), why
atients with worse shape completion exhibit worse premorbid scholas-
ic performance (ibid), and why patients with schizophrenia are more
usceptible to developmental dyslexia ( Whitford et al., 2018 ). 

.3. Frontoparietal feedback to mid-level vision via the dorsal attention 

etwork 

Frontoparietal network regions were differentially active in or-
itofrontal, dorsolateral prefrontal, and posterior parietal cortex, and
ctivations within this network were able to estimate activations in the
emaining modulated task regions. Despite receiving little regard in the
iterature (M. M. Murray and Herrmann, 2013 ; Seghier and Vuilleu-
ier, 2006 ), frontoparietal involvement is not wildly unexpected. In

he aforementioned MEG study, peak orbitofrontal modulation from
assively-viewed Kanizsa shapes arose 340 ms post stimulus onset
 Halgren et al., 2003 ). In eight month- (but not six month-) old infants,
amma band oscillations (40 HZ) from Kanizsa shapes were generated
ver frontal electrodes between 240-320 ms ( Csibra et al., 2000 ). 

Frontoparietal regions may create expectation-based predictions
 Bar, 2003 ) for amplifying less salient illusory contours and thereby
mproving task performance. For example, blurry lightness-induced sur-
aces (so-called “salient regions; Stanley and Rubin, 2003 ) generate a de-
ayed LOC activation relative to standard Kanizsa shapes ( Shpaner et al.,
009 ), potentially reflecting the brain’s late-arriving best guesses about
he precise shape of the incoming stimulus. In a fat/thin discrimina-
ion behavioral study, biasing observers to see edge elements as dis-
onnected worsened the discrimination of illusory but not fragmented
hapes ( Keane et al., 2012 ), suggesting again that noticing and using
llusory contours for shape discrimination requires appropriately con-
eptualizing the stimulus. Top-down signals may additionally allow ob-
ervers to cognitively infer (or “abstract ”) missing contours that can-
ot be formed via illusory contour formation such as when edge ele-
ents are extremely sparse, misaligned, or misoriented ( Keane, 2018 ;
yatte et al., 2014 ). Finally, the frontoparietal network may commu-

icate with mid-level visual structures primarily by way of the dorsal
ttention network ( Cavada and Goldman-Rakic, 1989 ). As evidence, all
ine modulated frontoparietal parcels in our resting-state analysis were
ignificantly connected to at least one dorsal attention region, most typ-
cally in the posterior parietal cortex. 

Note that high-level feedback of the type described is compati-
le with a fast, automatic and overall modular illusory contour for-
ation process ( Keane, 2018 ) that does not require conscious access

 Vandenbroucke et al., 2014 ; Vuilleumier, Valenza, & Landis, 2001 ).
llusory contours begin forming at 70 ms post-stimulus onset in V2
 Lee and Nguyen, 2001 ) and 90 ms in LOC (M. Murray et al., 2002 ).
refrontal feedback during object recognition plausibly occurs at 150
s post-stimulus onset, according to TMS, backward masking, and
EG/MEG studies ( Wyatte et al., 2014 ). Therefore, prefrontal cortical
ignals probably arrive too late to influence contour completion in its
nitial stages. Higher-order cortical feedback may also be ineffectual af-
er its arrival, if it must compete with persistently salient bottom-up
ignals ( Desimone and Duncan, 1995 ; Keane, 2018 ; McMains and Kast-
er, 2010 ). Parietal neglect patients with damage to inferior parietal cor-
ex can form illusory contours ( Vuilleumier, Valenza, & Landis, 2001 )
nd people with prefrontal cortical lesions can integrate disconnected
ontour elements ( Ciaramelli et al., 2007 ), suggesting again that these
reas may not be necessary for forming illusory contours. Thus, fron-
oparietal signals —and their dorsal attention conduits —may primarily
e important for performing computations on contours already formed
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n mid-level vision or for enabling conscious access to such contours.
thers have also argued via visual evoked potentials for a dissociable
utomatic illusory contour formation stage and an effortful shape dis-
rimination stage (M. M. Murray et al., 2006 ). 

.4. Objections, limitations, and opportunities for future research 

An objection is that the illusory and fragmented conditions required
bservers to judge different aspects of the stimulus (orientation or
hape), and so differences in “task set ” rather than shape completion
ay explain our results. To address this objection, we first note that any

dequate control condition will lack shape completion and will require
eeing the stimulus as categorically different. Therefore, it is not possi-
le to perfectly control for task set without obliterating the difference of
nterest. Second, differences in task set —at least in our study —did not
ake our two conditions incommensurable since the two were highly

orrelated in accuracy and reaction time ( r s > .7.s, p s < .001). These cor-
elations —which are consistent with an earlier study ( Keane et al.,
019 ) —are noteworthy because most visual tasks are only weakly cor-
elated despite having high test-retest reliability ( Grzeczkowski et al.,
017 ). Such correlations, coupled with the a priori considerations of
here being shared processes (see Methods), suggest that the left/right
ask successfully controlled for processes that were not of central inter-
st (visual short term memory, spatial attention, vigilance, etc.). 

Another objection is that eye movement differences could have con-
ounded our results. This objection is weakened by five considerations:
) all subjects were repeatedly asked to fixate within and outside of the
canner; 2) pac-men locations were equidistant from fixation, equally
nformative within a trial, and matched between conditions, reducing
he chance of systematic differences between tasks; 3) the illusory and
ragmented conditions were correlated in RT and accuracy, even for the
ccuracy matched sub-sample (n = 10; r s > .8, p s < .01), suggesting again
hat any possible eye movement differences impacted performance min-
mally; 4) saccading after stimulus onset would offer little benefit since
accade latency is ~200 ms ( Sumner, 2011 ) and the stimuli appeared
or only 250 ms at unpredictable times during a block; and, 5) there is
ittle evidence that eye movements impact visual shape completion in
on-translating displays and some evidence that it has no effect relative
o a control “fragmented ” condition ( Cox et al., 2013 ; see the fixational
eat maps in their Fig. S2). Thus, while we cannot completely rule out
ye movement confounds, they are unlikely to explain our results. 

Resting-state functional connectivity methodology is far from perfect
nd thus our results may be questioned on that basis alone. For exam-
le, non-neural factors such as head motion, physiological artifacts, and
he scanner environment can generate correlated noise across regions;
mage reconstruction introduces spatial smoothing artifacts; and so on
 Reid et al., 2019 ). We mitigated some of these shortcomings, for exam-
le, by using PC multiple regression (to avoid overfitting and to reduce
purious connections), by censoring high-motion frames (to avoid over-
stimating short-distance connections and underestimating far-distance
onnections; Power et al., 2012 ), and by using smaller voxel sizes (to
educe autocorrelation between parcels). The fact that our functional
onnectivity matrices could generate approximate task activation re-
ults via ActFlow and the fact that our group-averaged RSFC matrix was
ensible in other respects (e.g., clustering into known functional net-
orks, having more cross-hemisphere connections in sensory areas, see

ection 3.5 of the Results) suggest that our efforts to extract the func-
ional connectome were reasonably successful. 

Past psychophysical studies have shown similar illusory and frag-
ented task performance ( Keane et al., 2014 ) but in the present study

he fragmented task was about 7 percent better. Why? A possible rea-
on is that past studies required a verbal response on each trial whereas
urs required a button press. The congruence between the left and right
otations and left and right button press may have conferred a small but
onsistent benefit perhaps by diminishing the likelihood of misremem-
ering the mapping between keypress and response. We do not view
14 
his as problematic, since the effects arose when the congruence ben-
fit was behaviorally eliminated —both in RT and accuracy. Therefore,
hile large task accuracy differences clearly alter the neural data (as in

he easy versus hard contrast), smaller differences appear to have little
ffect. 

Limitations are worth noting. Although we used a nominal 2.4 mm
oxel size, higher spatial resolution methods would likely provide ad-
itional insights such as whether particular parcels project backwards
o specific layers —since superficial V1 and V2 layers exhibit more
obust firing responses to illusory shape contours than deep layers
 Lee and Nguyen, 2001 ) —or whether specific parcels are responsible
or up- versus down-regulating parts of retinotopic cortex ( Kok and de
ange, 2014 ). A larger sample size could have allowed us to identify
dditional regions, connections, and networks of shape completion, or
dditional associations between task activations and behavioral perfor-
ance. As has already been noted, the slow hemodynamic response
revents a full description of the temporal dynamics. Additional con-
rol conditions (e.g., matching on other features such as the central en-
rgy point of the pac-men) could further support the conclusions argued
bove; so too could eye movement analyses. While it was not a goal to
ease apart the various component processes leading up to shape com-
letion, future investigations will need to identify the specific regions,
etworks, and connections associated with local edge detection, illusory
ontour formation, lightness induced surface spreading, surface scission,
nd shape perception. 

To summarize, the present research identified a restricted set
f densely-interconnected regions that were responsive to visually
ompleted shapes. The secondary visual network —especially area
H —played a dominant role in the process, but portions of at least four
ther networks were also involved, suggesting that shape completion
s a distributed process. The dorsal attention network parcels appeared
o coordinate activity in the secondary visual network and across cor-
ex during visual shape completion. The frontoparietal network also ap-
ears to play a globally coordinating role. A logical next step will be
o apply neurostimulation to probe parcel-wise causal interactions or
lectrophysiology to assess their activity flow dynamics. 

ata/code availability 

Brain activity flow mapping matlab code is part of the
reely-available ActFlow toolbox: https://github.com/ColeLab/
ctflowToolbox . HCP minimal preprocessing pipelines are also publicly
vailable: https://github.com/Washington-University/HCPpipelines/ 
eleases . The Cole Anticevic Brain Network partition can be found
ere: https://github.com/ColeLab/ColeAnticevicNetPartition . Neural
ata are part of a larger clinical data set and will be released within
2 months on OpenNeuro.org, along with resting-state functional
onnectivity matrices and unthresholded task activation maps. 
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