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Abstract

A set of distributed cognitive control networks are known to contribute to diverse cognitive demands, yet it is unclear how these
networks gain this domain-general capacity. We hypothesized that this capacity is largely due to the particular organization of
the human brain’s intrinsic network architecture. Specifically, we tested the possibility that each brain region’s domain generality
is reflected in its level of global (hub-like) intrinsic connectivity as well as its particular global connectivity pattern (“connectivity
fingerprint”). Consistent with prior work, we found that cognitive control networks exhibited domain generality as they represented
diverse task context information covering sensory, motor response, and logic rule domains. Supporting our hypothesis, we found that
the level of global intrinsic connectivity (estimated with resting-state functional magnetic resonance imaging [fMRI]) was correlated
with domain generality during tasks. Further, using a novel information fingerprint mapping approach, we found that each cognitive
control region’s unique rule response profile(“information fingerprint”) could be predicted based on its unique intrinsic connectivity
fingerprint and the information content in regions outside cognitive control networks. Together, these results suggest that the human
brain’s intrinsic network architecture supports its ability to represent diverse cognitive task information largely via the location of

multiple-demand regions within the brain’s global network organization.

Keywords: cognitive control, domain-general, fMRI, information fingerprint, rule representation

Introduction

Cognitive control processes allow individuals to inten-
tionally select thoughts and behaviors according to
current goals. These processes are particularly important
in situations when previously learned rules need to be
applied in novel situations. This ability to transfer rules
from one context and apply them in a new situation
greatly increases cognitive flexibility. Rapid instructed
task learning (RITL) is a cognitive ability that many,
including ourselves, have used to study cognitive control
that requires especially flexible cognitive processes
(Liefooghe et al. 2013; Cole, Laurent, et al. 2013a; Pereg
and Meiran 2019; Ruge et al. 2019). These cognitive
control processes are supported by specialized large-
scale brain networks (Cole and Schneider 2007; Niendam
et al. 2012), which are thought to contribute to the ability
to direct cognition in a goal-directed manner by flexibly
reconfiguring domain-specific (e.g. sensory and motor)
neural systems (Desimone and Duncan 1995; Miller and
Cohen 2001; Schneider 2003; Cole, Reynolds, et al. 2013b;
Cole et al. 2017).

Historically, there has been a debate between theories
emphasizing the localization of brain function and those
that emphasize a highly distributed organization in the

brain. At the spatial scale of fMRI, evidence for cog-
nitive control networks suggests many cognitive pro-
cesses are neither fully distributed nor fully localized to
a single brain region, since it appears cognitive control
processes are distributed across regions within these
brain networks. The proposal for a multiple-demand net-
work followed the observation of common patterns of
activation during a variety of cognitive tasks including:
auditory discrimination, visual divided attention, self-
paced response production, task switching, spatial prob-
lem solving, and semantic processing of words (Dun-
can and Owen 2000; Duncan 2010). These findings sug-
gest that regions belonging to the multiple-demand net-
work are recruited under a large variety of cognitive pro-
cesses, regardless of the modality of the stimuli or spe-
cific cognitive demand. Despite the common patterns of
co-activation observed in the multiple-demand network,
subsequent research has suggested that this network is
not homogenous (Camilleri et al. 2018). The multiple-
demand network can be split into several smaller cog-
nitive control networks characterized by different cogni-
tive specializations (Cole and Schneider 2007; Yeo et al.
2015; Assem et al. 2020). This suggests that task-relevant
representations show different patterns of localization,
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and that they are not homogeneously distributed across
regions composing the multiple-demand network.

Going beyond task-evoked activity amplitudes, analy-
ses of multivariate task activation patterns has provided
important insights into the information content con-
tained within cognitive control networks. For instance, a
number of studies have found that rule identity can be
decoded based on multivariate activation patterns, and
that the most accurate decoding of these patterns tends
to occur in cognitive control network regions (Cole et al.
2011; Woolgar et al. 2011; Reverberi et al. 2012a; Reverberi
et al. 2012b; Yeo et al. 2015; Pischedda et al. 2017). Elec-
trophysiological studies in monkeys have also identified
neurons that code for specific task rules, largely in pre-
frontal cortical regions (White and Wise 1999; Asaad et al.
2000; Wallis and Miller 2003; Brincat et al. 2018). These
context-dependent neural representations within cog-
nitive control networks are likely crucial for increasing
cognitive flexibility during goal-directed cognitive tasks.

We previously found that multivariate patterns of acti-
vation within cognitive control networks contain infor-
mation across three distinct cognitive domains (logic,
sensory, and motor rules) in the concrete permuted rule
operations (C-PRO) paradigm. The C-PRO paradigm con-
sists of a large set of systematically related flexible con-
trol tasks (Ito et al. 2017; Cocuzza et al. 2020). We sought
to replicate these results and expand on them by testing
hypotheses regarding how the brain’s intrinsic network
architecture contributes to diverse task rule represen-
tations. Previous studies have found support for both
distributed and localized task rule representations in
the human brain. This may reflect the possibility that
task rule representation occurs on a continuum, from
highly distributed to largely localized. We predicted that
cognitive control brain regions would contain task rule
representations, or task information, across a wide vari-
ety of rule domains, consistent with previous research
supporting distributed rule representations across the
multiple-demand network. We also expected to observe
a degree of localization in task rule representations. For
example, we predicted task rule information specific to
the motor rules to be largely localized to the motor
cortex. While there is evidence for both localized and
distributed rule representations in the brain, this study
was designed to evaluate the degree of specialization of
task rule representations.

Although there is a great deal of evidence supporting
the existence of a multiple-demand network, it is unclear
how this domain generality emerges (Assem et al. 2020).
Building on our prior work demonstrating that regions
within this network are hubs with especially widespread
intrinsic connectivity (Cole, Bagic, et al. 2010a; Cole et al.
2012; Schultz et al. 2018; Cocuzza et al. 2020), we hypoth-
esized that domain generality may emerge from the
widespread hub connectivity of these brain regions. How-
ever, not all cognitive control regions are equally domain
general (Assem et al. 2020) suggesting a role for the
particular intrinsic connectivity patterns (connectivity

fingerprints) of these cognitive control regions in shaping
their specific level of domain generality. We recently
found that localized task-evoked responses can be accu-
rately predicted by distributed connectivity-based activ-
ity flow simulations (which model the movement of task-
evoked brain activity between brain regions), suggesting
prominent roles for distributed network-level processes
in determining many localized cognitive functions (Cole
et al. 2016; Hearne et al. 2021). Based on these and
related results, we developed the more specific hypoth-
esis that patterns of information content (information
fingerprints) in cognitive control regions are determined
by (and can therefore be predicted by) information con-
tent in other brain regions weighted by their connectivity
to cognitive control regions. If task rule representations
in cognitive control networks can be predicted based on
global intrinsic functional connectivity patterns, it would
further support the hypothesis that global connectivity
plays an important role in task rule representation. Alter-
natively, the intrinsic functional connectivity patterns
may not be important to task rule representation. For
example, the internal processing of information within a
functional node may be the critical feature determining
task rule representation with connectivity patterns being
less important. However, if the intrinsic network archi-
tecture is important, we would expect domain generality
in cognitive control networks to be predictable based on
the specific global connectivity profiles of regions within
these networks. Determining how these domain-general
representations are generated will be important given
that they may serve to integrate domain-specific repre-
sentations so they can be coordinated for task perfor-
mance when different combinations of rules are encoun-
tered, so likely increasing the cognitive flexibility of the
human brain.

Methods
Participants

Data were collected at the Rutgers University Brain Imag-
ing Center (RUBIC). The participants were recruited from
the Rutgers University-Newark campus and surrounding
community. All procedures were approved by the Rut-
gers University-Newark Institutional Review Board, and
all participants provided informed consent. The sample
consisted of data from 106 participants. Technical error
or equipment malfunction during the scanning session
resulted in removing six participants from the study. Out
of the remaining 100 participants, 56 were female and 44
were male. Participants were between the ages of 18 and
38 years (M =22.24,SD =4.07). Participants were all right-
handed, had not been diagnosed with any psychiatric
disorders, and met standard MRI safety criteria.

Behavioral Task

We used the C-PRO paradigm (Ito et al. 2017), which
is a variant of the original permuted rule operations
task (Cole, Bagic, et al. 2010a). The C-PRO task combines
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specific task rules from three different rule domains
(logical, sensory, and motor) to create 64 unique task sets
(Fig. 1). Each of the three different rule domains includes
four specific rules (Logic: both, not both, either, nei-
ther; Sensory: red, vertical, constant, high pitch; Motor:
left index, left middle, right index, right middle). This
task design allowed us to compare task rule information
content across three different modalities while control-
ling for attention, arousal, sensory input, and motor
output across tasks. Visual and auditory stimuli were
presented simultaneously on each trial with the visual
stimuli consisting of red or blue bars that were oriented
either horizontal or vertical. The auditory stimuli were
either high (3000 Hz) or low (300 Hz) tones that were
presented continuously or noncontinuously (beeping).
Trials were structured as miniblocks. Each miniblock
started by presenting instructions for 3925 ms. After
the instructions there was a jittered delay that lasted
between 1570 and 6280 ms. Three trials were presented.
The duration of each trial was 2355 ms. The intertrial
interval was 1570 ms. Following the last trial there was
another jittered delay between 7850 and 12 560 ms. The
mean miniblock duration was 28260 ms. Each of the
64 task set miniblocks were presented twice during the
experiment, and the same task set was never presented
consecutively.

MRI Parameters

Multiband whole-brain echo-planar imaging (EPI) data
were collected using a 32-channel head coil on a 3 T
Siemens Trio MRI scanner with the following parameters:
TR=785 ms, TE=34.8 ms, flip angle=55°, Bandwidth
1924/Hz/Px, in-plane FoV read =208 mm, 72 slices,
2.0 mm isotropic voxels, with a multiband acceleration
factor of 8. Whole-brain high-resolution T1-weighted and
T2-weighted anatomical scans with 0.8 mm isotropic
voxels were also collected. Spin echo field maps were
collected in both the anterior to posterior direction and
the posterior to anterior direction consistent with the
Human Connectome Project preprocessing pipelines
(Glasser et al. 2013). Resting-state fMRI was collected
prior to the task fMRI scans as described previously
(Schultz et al. 2018). The resting-state scan was 14 min
in duration (1070 TRs). Eight runs of task fMRI data were
collected while participants performed the C-PRO task.
Each task run had a duration of 7 min and 36 s (581
TRs). Task runs were run sequentially with a short break
between each run.

fMRI Preprocessing

We minimally preprocessed the fMRI data using the
publicly available Human Connectome Project minimal
preprocessing pipeline (version 3.5.0). This included
anatomical reconstruction and segmentation, EPI recon-
struction, segmentation, normalization to a standard
template, intensity normalization, and motion correction
(Glasser et al. 2013). The transformation of volume data
to the cortical surface is part of this pipeline. Subsequent

processing was conducted on CIFTI 64k gray ordinate
space. A standard general linear model (GLM) was fit
to the vertex-level task time series with a convolved
canonical hemodynamic response function from SPM
using the 64 task sets as regressors. Task regressors
represented the entire duration of each miniblock.
We also included 12 motion parameters (6 motion
estimates and their derivatives) and mean signal from
the ventricles and white matter (and their derivatives),
which were defined anatomically via Freesurfer (Fischl
et al. 2002) as nuisance regressors. Motion scrubbing
as described by Power et al. (2012) was implemented
with a frame-wise displacement threshold of 0.3 mm.
Frame-wise displacement estimates were temporally
filtered prior to thresholding to reduce the influence of
respiration on FD estimates (Siegel et al. 2017). Resting-
state data were processed in the same way as task data
with the exception of excluding the task based regressors.
Functional connectivity was estimated by calculating
Pearson’s correlation of the mean timeseries for each
pair of regions in the brain. Brain regions were defined
by the Glasser et al. (2016) parcellation which consists
of 360 cortical regions. Brain regions were assigned to
functional networks as in Ji et al. (2019).

fMRI Data Analysis

Information Estimates

Information estimates were computed for each brain
region (see Ito et al. 2017). The calculation of information
estimates was conducted within each participant using
a cross-validated multivariate pattern analysis.

IEg = Matchg — Mismatchg

Task beta estimates were created for each vertex and
for each of the 64 unique task sets. A representational
analysis using a minimum-distance metric (using
Spearman correlation as the distance measure) was then
calculated for each of the 360 cortical regions. Informa-
tion estimates were calculated on multiple levels (Mur
et al. 2009). First, we calculated information estimates
for each domain (Logic, Sensory, Motor). For each of the
64 task sets we calculated the similarity between the
vertex-level pattern of activation (Bk) with the vertex-
level pattern of activation in the remaining 63 task sets
that shared the rule of the domain being examined
(Bmatch) by Spearman correlation. There were 15 other
task sets that shared the rule of the domain being
examined (K).

MatchB _ 25:1 SCOI—E{(Bk: Bmatch)

Next we calculated the similarity between the vertex-
level pattern of activation (Bx) with the vertex-level pat-
tern of activation for each of the 63 remaining tasks
which did not share the rule of the domain being exam-
ined (we excluded the task sets that shared off-domain
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Figure 1. The concrete permuted rule operations cognitive paradigm and functional network assignments. (A) The cognitive paradigm combines specific
task rules from three different rule domains (logical, sensory, and motor) to create 64 unique task sets. Note that the auditory waveforms were not
presented to participants visually, just presented as auditory stimuli through headphones. (B) Functional network assignments for brain regions based

on (Ji et al. 2019).

rules with the held-out task set, 45 task sets [N]).

ZE=1 I:ZIrLl (scorr (B, Bmismatch)) /N:I
K

Mismatchg =

We calculated the mean similarity for task sets with
shared rules and the mean similarity for task sets with-
out a shared rule in the same domain. The mean of
these values across the 64 task sets was calculated.
Then we subtracted the nonshared rule similarity from
the shared rule similarity (Fig. 2). Thus, positive infor-
mation estimates indicate that the vertex-wise pattern
of activation is more similar to the vertex-wise pattern
of activation for trials in which shared rules for each
domain were present relative to the pattern of activation

for trials in which nonshared rules for each domain
were present. This results in an information estimate
for each domain (Logic, Sensory, Motor) for each brain
region. We used a similar procedure to calculate infor-
mation estimates for each individual task rule. Rather
than comparing all task sets that shared any rule in a
particular domain, we calculated the information esti-
mates for only task sets that shared a specific rule in
each domain. This process results in an information esti-
mate for each individual task rule for each brain region
(Logic: both, not both, either, neither; Sensory: red, ver-
tical, constant, high pitch; Motor: left index, left middle,
right index, right middle). Statistical comparisons were
made for each region by using a t-test against zero. The
P-values from these tests were corrected for multiple
comparisons using permutation tests where condition
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Figure 2. Calculation of information estimates. For each task set (task 1 in this example), we calculated the similarity of the vertex-wise activation

pattern for this task set with other task sets that shared a rule
share that rule (those in the blue area for the both rule in this example).

labels were shuffled (Nichols and Holmes 2002) with
1000 permutations unless otherwise specified, and a FWE
corrected threshold of P < 0.05 was used.

Information Fingerprint Mapping

Information fingerprints were defined for each brain
region as the pattern of the information estimates for
each of the 12 task rules (Logic: both, not both, either, nei-
ther; Sensory: red, vertical, constant, high pitch; Motor:
left index, left middle, right index, right middle). We used
a modified version of activity flow mapping (Cole et al.
2016) to predict information fingerprints. For each par-
ticipant, we predicted the information estimate for each
task rule by assigning weights to the information esti-
mate for every other region in the brain by the strength
of the functional connectivity between the two regions.
Importantly, the functional connectivity estimates were
based on an independent resting-state scan. After calcu-
lating the predicted information estimates, we combined
the 12 individual task rule information estimates into
information fingerprints and correlated the predicted
information fingerprints with the actual information fin-
gerprints. The resulting Pearson’s r values were Fisher’s
Z transformed, and group statistical comparisons were
made using a t-test against zero. The P-values from these

those in the red area for the both rule in this example) and other task sets that did not

tests were corrected for multiple comparisons using per-
mutation tests where condition labels were shuffled 1000
times unless specified otherwise, and a FWE corrected
threshold of P < 0.05 was used.

Results

Participants Learned the C-PRO Paradigm
Cross-subject average accuracy on the C-PRO task was
84.86%. Participants performed well above chance level
performance (25%) on all 12 rules: both (M(SD), 91.2%
(0.07%)); either (89.1(0.09)); Neither (81.4(0.11)); not both
(72.6(0.14)); constant (78.2(0.15)); high pitch (83.8(0.10));
red (86.7(0.08)); vertical (85.7(0.09)); left index (83.2(0.10));
left middle (84.0(0.10)); right index (83.5(0.10)); right mid-
dle (83.6(0.10)). No participants performed at less than
chance level on any of the rules.

Task Domain Information is Present in
Numerous Brain Regions

We tested whether the activation pattern within any
brain region contained information about each of the
three task domains (Logic, Sensory, Motor). This allowed
us to map task rule information and determine the
degree of distribution for each rule. We calculated the
information estimate for each region on each of the task
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domains. It is also important to note that the task was
counterbalanced in order to ensure that there was no
systematic difference in what stimuli were presented to
participants across rules so that task activation related
to the auditory and visual stimuli presented did not bias
information estimates.

The information estimate measure has previously
been validated using a computational model and a
portion of the same data analyzed here (Ito et al. 2017).
Briefly, the information estimate compares the similarity
in activation pattern (Spearman correlation) for a given
task (e.g., both, red, left index) with the activation
pattern from other tasks with a matching rule. That
value is compared to the similarity in activation pattern
between the same starting task (both, red, left index)
and the activation pattern from the other tasks that
do not share the same rule for each participant. An
information estimate value greater than zero suggests
that the pattern of activity for a particular rule is more
similar to tasks that share a rule than it is for tasks
that do not share a rule. If the information estimate
value is significantly greater than zero we conclude that
the activation pattern in that particular brain region
contains information related to the rule.

First we tested whether brain regions contained gen-
eral information about the three different modalities
(Logic, Sensory, Motor). For example, a region contained
information regarding the Logic rule domain if the pat-
tern of activity was more similar on tasks that shared
any Logic rule. We found that widespread regions of
the brain contained information regarding the Logic and
Sensory rules. We found that the brain regions containing
information about the Motor rules were largely located in
the somatomotor network, with several adjacent regions
from other networks containing information (Fig. 3).

One aspect of the task that could not be addressed with
counterbalancing was the possible influence of activity
related to motor responses on information estimates. For
each motor rule (left index, left middle, right index, right
middle), participants were much more likely to make a
motor response with the hand specified in the rule rather
than responses on the other hand. To address this issue,
we ran another version of the GLM that included four
regressors—one for each type of motor response partici-
pants made. Given that these motor response regressors
differed from the motor rule regressors (which were of
interest), the motor response regressors were treated as
nuisance regressors and we repeated the information
estimate calculations. We found that the magnitude
of the results for the Motor rule domain decreased
(largest t in the original analysis=20.44, largest t after
including the motor responses in the GLM =18.07). The
magnitude of the effect in the Logic and Sensory domains
were unchanged (Logic: largest t in the original analy-
sis=11.59, largest t after including the motor responses
in the GLM =11.57; Sensory: largest t in the original anal-
ysis =13.28, largest t after including the motor responses
in the GLM=13.32). Additionally, we examined the

pattern of information estimates across the brain for
each domain. The pattern of results in the Motor rule
domain was very similar in the original analysis and
in the analysis including the motor response regressors
(Spearman’s rs =0.707, P <0.0001). The similarity in the
results for the Logic and Sensory domain was even higher
(Logic: 1s=0.977, Sensory: 1s=0.986). Together, these
results suggest that activity related to motor responses
is not systematically biasing information estimates.
Next, we used the same process to evaluate whether
any brain regions contained information for each of the
twelve individual rules (both, not both, either, neither,
high, constant, red, vertical, left index, left middle, right
index, right middle). For example, the similarity in the
pattern of activation between a particular task (both, red,
left index) and other tasks containing the Both rule rela-
tive to tasks containing other Logic rules. This resulted in
twelve FWE-corrected maps, one for each individual rule

(Fig. 4).

Cognitive Control Networks Contain
Domain-General Information

Next, we assessed whether any brain regions contained
domain-general information. The brain maps for each
individual rule (Fig.4) were binarized, and if a brain
region contained a significant degree of information
(FWE-corrected) it was coded as a 1. If a brain region
did not contain a significant degree of information, it
was coded as 0. Then we determined the mean number
of rules that were coded for each domain in each
brain region. The mean across the three domains was
calculated for each region providing an estimate of the
degree of domain generality. A truly domain-general
brain region would contain information for all rules
across all domains. Based on our metric this brain region
would get a score of 4. A brain region that contained
information about all four rules in one domain but no
rules in the other two domains would get a score of
1.33. We found that cognitive control networks (DAN,
FPN, CON) had the largest values suggesting that they
contained information from a wide variety of rules and
domains (Fig. 5). The cognitive control networks coded
for a larger number of rules per domain than other brain
regions, t(358) =3.61, P=0.00035.

Mapping Domain-Specific Information

We next sought to contrast with domain generality
identifying brain regions that preferentially contained
information for a specific rule modality. For each rule
modality, we identified brain regions that contained
information for a larger number of rules than the
remaining modalities. Within these regions, we calcu-
lated the difference between the number of rules coded
for the modality of interest and subtracted the mean
number of rules coded of the remaining modalities.
A larger number would indicate a greater imbalance
in task rule information suggesting that the region
preferentially contained task rule information pertaining
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Figure 3. Brain regions contain information across content domains. Vertex activity within each brain region can be used to decode rules. (A) Widespread
cortical regions from many networks contain information for the logic rules. Only significant results are shown. Nonsignificant results appear as gray
for panels A, B, and C. (B) Significant sensory rule information is also evident in a large number of regions and many networks. (C) Sensorimotor network
brain regions contain the most information for the motor rules. The degree of information content in the sensorimotor network is also greater than
that observed in either the logic or sensory rules. (D) Conjunction between panels A, B, and C showing how many domains each brain region represents.
(E) Summarizing the mean number of domains that are represented in each functional network. Cognitive control networks (marked by black boxes)
contain information about the highest number of domains. Error bars indicate standard error.

to the modality of interest (Fig. 6). Qualitatively, we found
that the DMN contained domain-specific information
related to the Logic rules. We also observed that the
visual and auditory networks contained domain specific
information related to the Sensory rules. Additionally,
the somatomotor network appeared to contain domain
specific information related to the Motor rules.

Domain-General Regions Are Active During
Many Task Contexts and Are More Hub-Like

We ran a standard GLM using 64 task regressors (one
for each possible rule combination) and tested which
brain regions showed a significant (FWE-corrected) level
of activation for each of the 64 unique rule combinations.
Then we calculated a summary statistic for each region
reflecting what percentage of the 64 tasks showed signif-
icant positive activation (Fig. 7A). It is important to note
that the results of this task activation analysis are not
only sensitive to activity related to each of the unique
rule combinations but also to shared cognitive processes
that are common to the general structure of the task such

as reconfiguration, task switching, and working memory.
Finally, we compared the percentage of activation for
the unique rule combinations in domain-general brain
regions (mean rules coded per domain >3) and the rest
of the brain. The probability of a brain area showing
significant activity during the task was not normally
distributed, so we used the Wilcoxon signed rank test to
evaluate the difference in the probability of activation
during the task for domain-general regions and the rest
of the brain. Domain-general regions are more likely to
be active during different task rule combinations than
the rest of the brain, Z=4.73, P=0.0000021 (Fig. 7B). The
mean number of rules coded per domain was positively
correlated with the percentage of activation, Spearman’s
rtho=0.3754, P=0.0000000000001719.

Domain-general brain regions were more likely to
be activated during the performance of the task. One
possible explanation for this result is that cognitive
control network regions are well connected to the rest
of the brain and different types of information regarding
the task may converge in these areas allowing them
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Figure 4. Information estimates for each of the individual rules are largely consistent within each modality. Significant information estimates (FWE
corrected P < 0.05) are shown for each of the twelve rules. Each column represents a rule domain and rows are the four rule variants within each domain.
The information estimates for each individual rule are also consistent with the more general information estimates calculated at the domain level. The
percentage of cortical regions (out of 360) showing significant information estimates is provided for each rule.
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Figure 5. Cognitive control networks show domain general properties. (A) The mean number of rules coded across domains for each brain region. Brain
regions colored in red contain information for all four rules in each domain. Brain regions depicted in white may only code for one specific rule in
one particular domain. (B) Summarizing the mean number of rules coded per domain across the functional networks reveals that cognitive control
networks (marked by black boxes) are domain general meaning they contain information for a larger number of rules than other brain networks. Error
bars indicate standard error.
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to represent more complex aspects of the task. Using  region was connected to across-network brain regions.
resting-state data that were collected independent of =~ We used the between network global connectivity
task performance, we evaluated how well each brain measure, which computes the average functional
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Figure 6. Some regions contain domain specific information. Panels reflect the difference of rules coded for each domain from the mean number of
rules coded for the other two domains. (A) Some regions contain more information for the logic domain than the sensory and motor domains. Many
of the regions containing logic domain specific information are in the DMN. (B) Some regions contain more information for the sensory rules than the
logic and motor rules. The stimuli presented were visual and auditory. Domain specific information for the sensory rules is primarily located in the
visual and auditory networks. (C) Some regions contain more information for the motor rules than the logic and sensory rules. Domain specificity for

the motor rules is primarily observed in the somatomotor network.
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Figure 7. Domain general brain regions are active during a wide variety of task contexts and serve as hubs. (A) The proportion of task sets showing
significant activation during the task. (B) Domain general regions, those brain areas containing information for >3 rules per domain, have a higher
probability of activation across task contexts. The lines on the violin plots represent quartiles. Asterisks indicate P < 0.05. (C) Domain general regions
also have significantly greater between-network global connectivity during resting state. The lines on the violin plots represent quartiles. (D) Between-
network global connectivity shows a significant positive rank correlation with their degree of domain generality.

connectivity (weighted) of a region excluding within  values were significantly higher in domain-general
network connections (Ito et al. 2017; Schultz et al. 2018).  brain regions, t(99) =18.99 (Fig. 7C). This suggests that
We found that between network global connectivity = domain-general brain regions are more likely to serve
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as between network hubs in the brain. Between-network
global connectivity was positively correlated with the
mean number of rules coded per domain, Spearman’s
15 =0.3908, P=0.00000000000001399 (Fig. 6D).

Region-Specific Information Fingerprints Are
Predicted by Connectivity Fingerprints

We hypothesized that the pattern of task rule coding in a
particular region would be related to the pattern of task
rule coding in the brain and the degree to which those
regions share information. To evaluate this hypothesis
we used the concept of activity flow mapping (Cole et al.
2016), which found that activation in a held-out region of
the brain could be predicted by the activity in the rest of
the regions of the brain weighted by the strength of the
functional connections between these regions. We used
a similar concept to predict information fingerprints in
brain regions using the information fingerprints from
other brain regions and the functional connectivity
between them (Fig. 8A). Here we refer to information
fingerprints as the pattern of information content across
all twelve of the task rules for each region of the brain.
This can be visualized with a radar plot where each
arm of the plot represents one of the task rules and the
farther the point is from the center of the plot the more
information for that rule is contained in the brain region.
We also calculated the mean information fingerprint
for each functional network. The somatomotor network
contains the most information about the Motor rules,
the visual 2 network contains the most information
about the Sensory rules, and the FPN and language
networks contain the most information about the Logic
rules. A similar radar plot was created for predicted
information fingerprints. There was a significant cor-
relation between the network level actual information
fingerprints and the predicted information fingerprints,
1s=0.319, P=0.0001. We found that we could predict
information fingerprints significantly better than chance
for every region in the brain (mean correlation between
predicted and actual information fingerprints of r=0.42,
Fig. 8C). Regions within the same functional network
by definition are most strongly connected to other
regions in the same functional network. It is possible
that the prediction of information fingerprints could be
explained by regions within a network sharing a similar
information fingerprint and that information being given
a greater weight in our model. To address this issue, we
predicted the information fingerprint for each region, but
based this prediction only on information fingerprints
from out of network regions. We found that we could
predict information fingerprints based only on out of
network sources (mean correlation between predicted
and actual information fingerprints of r=0.35). While
including within network information makes for more
accurate predictions, the decrease in correlation between
predicted and actual information fingerprints was
minimal.

We were able to successfully predict information fin-
gerprints. Next we tested if the domain-general brain
regions we had previously identified using the actual
information estimates would show a similar pattern of
domain generality based on our predicted information
estimates. The variability in predicted information esti-
mates across individuals decreased relative to the vari-
ability in the actual information estimates, so—to remain
conservative (reduced variability increases statistical sig-
nificance)—we revised our statistical approach. We used
the variability from the actual information estimates
while calculating the t statistics for the predicted infor-
mation estimates, as well as in the permutation tests.
Then, similar to Figure 5A, we calculated the mean num-
ber of rules coded across domains (Fig. 9A). There was
a significant correlation between the predicted domain
generality map (Fig. 9A) and the actual domain gen-
erality map (Fig. 5A) 1s=0.564, P <0.0001 (Fig. 9B). The
relationship between predicted and actual rules coded
for each brain region was statistically stronger than the
relationship between actual rules coded and the hub
properties of each region (Fig. 7D), even after accounting
for overlapping correlations (Meng and Rosenthal 1992),
z=3.15,P=0.0017.

Finally, we tested the hypothesis that information fin-
gerprints in domain-general cognitive control regions
could be predicted by information fingerprints in other
parts of the brain and the intrinsic functional connectiv-
ity profiles of the cognitive control regions. We recalcu-
lated predicted information fingerprints for each brain
region, but based those predictions on information esti-
mates from noncognitive control regions. Specifically, we
“lesioned” the information estimates in the CON, DAN,
and FPN to see if we could predict the information fin-
gerprints of those regions based on the information in
the rest of the brain. Information fingerprints could be
accurately predicted in every cognitive control region
(Fig. 9C). The mean correlation between the actual and
predicted information fingerprints was significant for
each of the three networks (CON: M =0.319, t(99) = 21.41,
P <0.000001; DAN: M =0.386, t(99) =27.72, P <0.000001;
FPN: M =0.374, t(99) = 20.41, P < 0.000001).

Discussion

We found that task rule representations vary in how
distributed they are across the cortex. While task
rule representations were distributed, they tended to
be represented in domain-general cognitive control
networks. This is consistent with these regions being
classified as hubs and showing a high degree of task
activation. Furthermore, we found that the pattern of
information content, or information fingerprint, for each
of the rules in a brain region could be predicted using
the intrinsic functional connectivity properties of each
region in conjunction with the information fingerprints
derived in the rest of the brain. Finally, we showed that
domain generality in cognitive control networks could
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Figure 8. Information fingerprint mapping can predict patterns of task rule information content across the brain. (A) Information fingerprints were
computed for each region of the brain. Using a simple network diffusion principle based on activity flow mapping (Cole et al. 2016), information
fingerprints for a held-out region can be predicted by weighting the information fingerprints from all other brain regions by the strength of their
resting-state functional connectivity to the held-out region. (B) Group average actual and predicted information fingerprints for three representative
brain regions. Radar plots depict rank ordered information estimates with the highest information estimates at the perimeter and the lowest information
estimates near the center. (C) Information fingerprints can be predicted above chance for every region in the brain. Correlations between actual and
predicted information fingerprints for each brain region (FWE corrected P <0.05). Colored circles indicate the location of the regions depicted in the

radar plots in Figure 8B.

be predicted by the intrinsic connectivity profile of those
networks in conjunction with information from other
brain networks.

Previous research has suggested that task rule repre-
sentation in the brain occurs somewhere on a contin-
uum between localized and highly distributed. Consis-
tent with this framework, we found that task rule rep-
resentations varied in how distributed they were across
the brain. Logic and sensory rule information was widely
distributed across the brain while motor rule informa-
tion was more localized to largely somatomotor network
regions. We found that regions belonging to the fron-
toparietal, cingulo-opercular, and dorsal attention net-
work contained domain-general task rule information.
These results support previous work that has identified
a multiple-demand network that is involved in a wide
variety of cognitive tasks (Duncan and Owen 2000). While
these results support the hypothesis that task rule rep-
resentation in the brain occurs on a continuum, it is
important to note that this conclusion is based on the
spatial limitations of fMRI data. It will be important for
future studies to evaluate this hypothesis using methods
capable of examining the brain on different scales.

Multivariate activation patterns have also been used
to decode task rule representations. Several studies have
suggested that the most accurate rule decoding using
multivariate activation patterns occurs in cognitive con-
trol regions (Esterman et al. 2009; Cole et al. 2011; Rever-
beri et al. 2012a; Reverberi et al. 2012b). If cognitive
control regions can decode a larger number of differ-
ent rules as we observed, it would be consistent with
more accurate rule decoding in these regions as well.
Electrophysiological recordings have provided additional
evidence that cells in the prefrontal cortex can code for
specific task rules (White and Wise 1999; Asaad et al.
2000; Wallis and Miller 2003; Brincat et al. 2018). The
concept of mixed selectivity—the representation of mul-
tiple pieces of information by single neurons—has been
used as a model to understand how cognitive control
brain regions can contribute to flexible cognition (Rigotti
et al. 2013). Analyses of multiunit recordings of non-
human primates have identified mixed selectivity cells
in some prefrontal neurons, demonstrating that single
prefrontal neurons can respond to several aspects and
combinations of task variables at once (Asaad et al. 1998;
Warden and Miller 2010). This type of context-dependent
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Figure 9. Information fingerprints and domain generality of cognitive control regions can be predicted using intrinsic functional connectivity profiles.
Information estimates were predicted for each brain region by weighting information estimates in other brain regions by the strength of the connectivity
between the regions (see Fig. 8A). (A) Predicted information estimates for each of the task rules were thresholded to identify the mean number of rules
coded for each domain based on predicted information estimates. This domain generality map for predicted information estimates was consistent
with the domain generality map of the actual information estimates (Fig. 5A). (B) Scatterplot depicting the significant correlation between the actual
mean number of rules coded for each domain and the predicted mean number of rules coded per domain across all 360 brain regions. (C) Information
fingerprints in all cognitive control regions could be successfully predicted based on the intrinsic functional connectivity patterns of those regions and

the information estimates from noncognitive control regions.

neural representation is one possible mechanism for
how cognitive control networks achieve their “multiple
demand” status, potentially increasing cognitive flexibil-
ity via flexible representation of information.

Some brain regions exhibited domain-general char-
acteristics, but other regions coded for more domain
specific information. The logic rules were preferentially
represented in the default mode network. We expected
that logic rules would be preferentially coded in the
frontoparietal network. It is important to note that
the logic rules were represented there but that the
FPN regions also contained information from the other
domains which led to more balanced coding and
therefore less of a preference for the logic rules. The
default mode network containing information more
specific to the logic domain is consistent with previous
studies showing task rule decoding in the default mode
network related to; the level of self-reported detail during
the performance of a working memory task (Sormaz et al.
2018), representing task-related information during task
switching (Crittenden et al. 2015), or covert attention
during a free selection task (Haynes et al. 2007). We
found that sensory networks, specifically the visual
and auditory networks, preferentially coded for sensory
rules. Previous research has also found evidence of
coding in visual cortex for orientation (Boynton 2005;
Haynes and Rees 2005; Kamitani and Tong 2005) and
for color (Brouwer and Heeger 2009; Parkes et al. 2009).
Multivariate patterns of activity in the auditory network
can also decode auditory stimuli including human

speech (Formisano et al. 2008) and decode several other
categories of auditory stimuli (Staeren et al. 2009; Zhang
et al. 2015). Finally, we found that the motor rules
were preferentially coded in the somatomotor network.
Previous studies have found that intended motor actions
can be decoded from activity patterns in the motor
network (Ariani et al. 2015; Gallivan et al. 2015; Gertz
et al. 2017).

We observed that domain-general brain regions also
had a higher probability of activation during the task.
This finding is consistent with descriptions of a multiple-
demand network (Duncan 2010) which overlaps with
cognitive control networks. We also found that domain-
general brain regions had higher between-network global
connectivity, a measure of how well a brain region is
connected to other out-of-network regions, during a
resting-state scan. Other studies suggest that cognitive
control networks have a high degree of connectivity
(Cole, Pathak, et al. 2010b; Power et al. 2011), specifically
for between network connections (Schultz et al. 2018).
Along with a high degree of connectivity, cognitive
control networks can also adaptively update these
connections based on current goals (Cole, Reynolds, et al.
2013b). Cognitive control networks have a high degree
of connectivity and the ability to rapidly update these
connections which are characteristics of flexible hubs.
This is one possible explanation for why cognitive control
networks show domain-general characteristics.

The pattern of task rule information in each brain
region could be predicted by weighting the task rule
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information patterns in the rest of the brain by its
resting-state functional connectivity strength. Additional
analyses indicated that domain generality in cognitive
control networks could be predicted by their intrinsic
functional connectivity profiles in conjunction with
information from noncognitive control regions. While
these cognitive control networks appeared to contain
domain-general information, these domain-general
regions can be subdivided into smaller networks that
specialize in different cognitive functions (Power and
Petersen 2013). The FPN is thought to be involved in
the initiation of control and for adjusting control in
response to feedback or instructions (Braver et al. 2003;
Dosenbach et al. 2007; Cole, Reynolds, et al. 2013b;
Cocuzza et al. 2020). The function of the CON has been
more difficult to characterize with some suggesting it has
a role in task-set maintenance (Dosenbach et al. 2007;
Sadaghiani and D’Esposito 2015), arousal or alertness
(Coste and Kleinschmidt 2016), or conflict monitoring
(Neta et al. 2014; Braem et al. 2019). The DAN is thought
to be involved in the top-down control of attention
(Corbetta and Shulman 2002; Buschman and Kastner
2015) and eye movement control (Corbetta et al. 1998).
The heterogeneity of these components of the multiple-
demand network has been supported by resting-state
functional connectivity data demonstrating that these
components are characterized by distinct functional
connectivity profiles (Power et al. 2011; Yeo et al. 2011; Ji
et al. 2019). Additionally, changes in functional connec-
tivity patterns during the performance of cognitive tasks
also supports functional specialization across cognitive
control networks (Cohen and D’Esposito 2016). Other
task activation studies have found evidence for domain
specificity within the multiple-demand network (Yeo
et al. 2015; Crittenden et al. 2016), and even between
portions of the FPN (Badre and D’Esposito 2007; Nee and
D’Esposito 2016). Together, these results suggest that
the domain-general characteristic of cognitive control
networks may emerge from the intrinsic connectivity
patterns of these networks.

There are some limitations of this study which impact
how generalizable the results are to other situations.
One limitation is that although the C-PRO task allows us
to compare many different rule combinations, the task
structure is relatively rigid. Participants view instruc-
tions, are presented with stimuli, and make a response.
The instructions are text presented visually. Future
studies may want to consider presenting instructions
with auditory stimuli, or using a non-text-based visual
presentation. Additionally, the stimuli used in the study
were simple auditory and visual. It will be important
for future studies to examine how information content
is represented for other stimulus modalities, or with
more complex auditory and visual stimuli. Although we
balanced the numerous task rules as well as possible,
there were some differences in task accuracy across the
rules. Ideally, participants would demonstrate equivalent
accuracy on the various task rules to rule out the
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possibility that task accuracy was contributing to the
decoding analyses we conducted. Although we cannot
conclude that differences in task accuracy are not
contributing to our results to some degree, we did observe
largely consistent decodability across different rules
within the same domain even in situations where there
were task accuracy differences.

Together, our results support our hypothesis that task
rule representations exist on a continuum between dis-
tribution and localization. We also found that patterns
of task rule information in cognitive control networks
could be predicted from patterns of task rule repre-
sentation in other networks and the connectivity from
those regions. This prediction used functional connec-
tivity estimated via an independent resting-state scan,
which suggests that intrinsic whole-brain connectivity
patterns help shape the way that task activation patterns
from different brain regions are combined during task
performance. Domain generality may emerge based on
the intrinsic network organization of the brain. These
results support the hypothesis that cognitive control net-
works use their unique intrinsic functional connectivity
patterns to integrate domain-specific representations.
These representations can then be coordinated during
task performance in situations when novel combinations
of rules are encountered. This likely increases the cogni-
tive flexibility of the human brain.

Notes

This work was completed using the Holland Computing
Center of the University of Nebraska, which receives sup-
port from the Nebraska Research Initiative. The authors
acknowledge the Office of Advanced Research Comput-
ing (OARC) at Rutgers and The State University of New
Jersey for providing access to the Amarel cluster and
associated research computing resources. The authors
also acknowledge the Rutgers University Brain Imaging
Center at Rutgers University-Newark and members of
the Cole Neurocognition Lab for data collection support.
Conflict of Interest: None declared.

Funding

US National Institutes of Health (K99-R00 MH096801, R01
AGO055556, and R01 MH109520). The content is solely the
responsibility of the authors and does not necessarily
represent the official views of any of the funding agen-
cies.

References

Ariani G, Wurm MF, Lingnau A. 2015. Decoding internally and
externally driven movement plans.] Neurosci. 35(42):14160-14171.
https://doi.org/10.1523/JNEUROSCI.0596-15.2015.

Asaad WF, Rainer G, Miller EK. 1998. Neural activity in the pri-
mate prefrontal cortex during associative learning. Neuron. 21(6):
1399-1407. https://doi.org/10.1016/S0896-6273(00)80658-3.

Z20z fienuer Gz uo Jesn selieiqi] Alistaniun s1ebiny Aq $0S1 1 S9/S61IBYA/I00180/€60 "0 L /I0p/3]01LIB-00UBAPER/I00180/W02 dNO"dIWapeI.//:sdly WOl PaPEOjUMO(]


https://doi.org/10.1523/JNEUROSCI.0596-15.2015
https://doi.org/10.1016/S0896-6273(00)80658-3

14 | Cerebral Cortex, 2022, Vol. 00, No. 00

Asaad WF, Rainer G, Miller EK. 2000. Task-specific neural activity
in the primate prefrontal cortex. J Neurophysiol. 84(1):451-459.
https://doi.org/10.1152/jn.2000.84.1.451.

Assem M, Glasser MF, Van Essen DC, Duncan J. 2020. A domain-
general cognitive core defined in multimodally parcellated
human cortex. Cereb Cortex. 30(8):4361-4380. https://doi.o
1g/10.1093/cercor/bhaa023.

Badre D, D’Esposito M. 2007. Functional magnetic resonance imaging
evidence for a hierarchical organization of the prefrontal cortex.
J Cogn Neurosci. 19(12):32.

Boynton GM. 2005. Imaging orientation selectivity: decoding con-
scious perception in V1. Nat Neurosci. 8(5):541-542. https://doi.o
rg/10.1038/nn0505-541.

Braem S, Bugg JM, Schmidt JR, Crump MJC, Weissman DH, Note-
baert W, Egner T. 2019. Measuring adaptive control in conflict
tasks. Trends Cogn Sci. 23(9):769-783. https://doi.org/10.1016/j.ti
€s.2019.07.002.

Braver TS, Reynolds JR, Donaldson DI. 2003. Neural mechanisms of
transient and sustained cognitive control during task switching.
Neuron. 39(4):713-726.

Brincat SL, Siegel M, von Nicolai C, Miller EK. 2018. Gradual progres-
sion from sensory to task-related processing in cerebral cortex.
Proc Natl Acad Sci. 115(30):E7202-E7211. https://doi.org/10.1073/
pnas.1717075115.

Brouwer GJ, Heeger DJ. 2009. Decoding and reconstructing color from
responses in human visual cortex. ] Neurosci. 29(44):13992-14003.
https://doi.org/10.1523/JNEUROSCI.3577-09.2009.

Buschman TJ, Kastner S. 2015. From behavior to neural dynamics:
an integrated theory of attention. Neuron. 88(1):127-144. https://
doi.org/10.1016/j.neuron.2015.09.017.

Camilleri JA, Muller VI, Fox P, Laird AR, Hoffstaedter F, Kalen-
scher T, Eickhoff SB. 2018. Definition and characterization of
an extended multiple-demand network. NeuroImage. 165:138-147.
https://doi.org/10.1016/j.neuroimage.2017.10.020.

Cocuzza CV, Ito T, Schultz D, Bassett DS, Cole MW. 2020. Flex-
ible coordinator and switcher hubs for adaptive task con-
trol. J Neurosci. 40(36):6949-6968. https://doi.org/10.1523/JNEURO
SCI.2559-19.2020.

Cohen JR, D’Esposito M. 2016. The segregation and integration
of distinct brain networks and their relationship to cognition.
] Neurosci. 36(48):12083-12094. https://doi.org/10.1523/J]NEURO
SCI.2965-15.2016.

Cole MW, Schneider W. 2007. The cognitive control network: inte-
grated cortical regions with dissociable functions. Neurolmage.
37(1):343-360. https://doi.org/10.1016/j.neuroimage.2007.03.071.

Cole MW, Bagic A, Kass R, Schneider W. 2010a. Prefrontal dynam-
ics underlying rapid instructed task learning reverse with prac-
tice. ] Neurosci. 30(42):14245-14254. https://doi.org/10.1523/JNEU
ROSCI.1662-10.2010.

Cole MW, Pathak S, Schneider W. 2010b. Identifying the brain’s most
globally connected regions. Neurolmage. 49(4):3132-3148. https://
doi.org/10.1016/j.neuroimage.2009.11.001.

Cole MW, Etzel JA, Zacks JM, Schneider W, Braver TS. 2011. Rapid
transfer of abstract rules to novel contexts in human lateral
prefrontal cortex. Front Hum Neurosci. 5. https://doi.org/10.3389/
fnhum.2011.00142.

Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS. 2012. Global
connectivity of prefrontal cortex predicts cognitive control and
intelligence. J Neurosci. 32(26):8988-8999. https://doi.org/10.1523/
JNEUROSCI.0536-12.2012.

Cole MW, Laurent P, Stocco A. 2013a. Rapid instructed task learning:
anew window into the human brain’s unique capacity for flexible

cognitive control. Cogn Affect Behav Neurosci. 13(1):1-22. https://
doi.org/10.3758/s13415-012-0125-7.

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver
TS. 2013b. Multi-task connectivity reveals flexible hubs
for adaptive task control. Nat Neurosci. 16(9):1348-1355.
https://doi.org/10.1038/nn.3470.

Cole MW, Ito T, Bassett DS, Schultz DH. 2016. Activity flow over
resting-state networks shapes cognitive task activations. Nat Neu-
rosci. 19(12):1718-1726. https://doi.org/10.1038/nn.4406.

Cole MW, Braver TS, Meiran N. 2017. The task novelty para-
dox: flexible control of inflexible neural pathways during rapid
instructed task learning. Neurosci Biobehav Rev. 81:4-15. https://
doi.org/10.1016/j.neubiorev.2017.02.009.

Corbetta M, Shulman GL. 2002. Control of goal-directed and
stimulus-driven attention in the brain. Nat Rev Neurosci. 3(3):
215-229. https://doi.org/10.1038/nrn755.

Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury
HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, et al.
1998. A common network of functional areas for attention and
eye movements. Neuron. 21(4):761-773. https://doi.org/10.1016/
S0896-6273(00)80593-0.

Coste CP, Kleinschmidt A. 2016. Cingulo-opercular network activ-
ity maintains alertness. Neurolmage. 128:264-272. https://doi.o
rg/10.1016/j.neuroimage.2016.01.026.

Crittenden BM, Mitchell DJ, Duncan J. 2015. Recruitment of the
default mode network during a demanding act of executive
control. Elife. 4:e06481. https://doi.org/10.7554/eLife.06481.

Crittenden BM, Mitchell DJ, Duncan J. 2016. Task encoding across the
multiple demand cortex is consistent with a frontoparietal and
cingulo-opercular dual networks distinction. J Neurosci. 36(23):
6147-6155. https://doi.org/10.1523/INEUROSCI.4590-15.2016.

Desimone R, Duncan J. 1995. Neural mechanisms of selective
visual attention. Annu Rev Neurosci. 18:193-222. https://doi.o
rg/10.1146/annurev.ne.18.030195.001205.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosen-
bach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, et al. 2007.
Distinct brain networks for adaptive and stable task control in
humans. Proc Natl Acad Sci. 104(26):11073-11078.

Duncan J. 2010. The multiple-demand (MD) system of the primate
brain: mental programs for intelligent behaviour. Trends Cogn Sci.
14(4):172-179. https://doi.org/10.1016/.tics.2010.01.004.

Duncan J, Owen AM. 2000. Common regions of the human frontal
lobe recruited by diverse cognitive demands. Trends Neurosci.
23(10):475-483. https://doi.org/10.1016/50166-2236(00)01633-7.

Esterman M, Chiu Y-C, Tamber-Rosenau BJ, Yantis S. 2009. Decoding
cognitive control in human parietal cortex. Proc Natl Acad Sci.
106(42):17974-17979. https://doi.org/10.1073/pnas.0903593106.

Fischl, B, Salat, D. H,, Busa, E., Albert, M., Dieterich, M., Haselgrove,
C., Van Der Kouwe, A, Killiany, R, Kennedy, D, Klaveness, S., &
others. (2002). Whole brain segmentation: automated labeling of
neuroanatomical structures in the human brain. Neuron, 33(3),
341-355.

Formisano E, De Martino F, Bonte M, Goebel R. 2008. “Who” is saying
“what”? Brain-based decoding of human voice and speech. Sci-
ence. 322(5903):970-973. https://doi.org/10.1126/science.1164318.

Gallivan JP, Johnsrude IS, Flanagan JR. 2015. Planning ahead: object-
directed sequential actions decoded from human frontopari-
etal and occipitotemporal networks. Cereb Cortex. 26(2):708-730.
https://doi.org/10.1093/cercor/bhu302.

Gertz H, Lingnau A, Fiehler K. 2017. Decoding movement goals from
the fronto-parietal reach network. Front Hum Neurosci. 11. https://
doi.org/10.3389/fnhum.2017.00084.

Z20z fienuer Gz uo Jesn selieiqi] Alistaniun s1ebiny Aq $0S1 1 S9/S61IBYA/I00180/€60 "0 L /I0p/3]01LIB-00UBAPER/I00180/W02 dNO"dIWapeI.//:sdly WOl PaPEOjUMO(]


https://doi.org/10.1152/jn.2000.84.1.451
https://doi.org/10.1093/cercor/bhaa023
https://doi.org/10.1093/cercor/bhaa023
https://doi.org/10.1038/nn0505-541
https://doi.org/10.1038/nn0505-541
https://doi.org/10.1016/j.tics.2019.07.002
https://doi.org/10.1016/j.tics.2019.07.002
https://doi.org/10.1073/pnas.1717075115
https://doi.org/10.1073/pnas.1717075115
https://doi.org/10.1523/JNEUROSCI.3577-09.2009
https://doi.org/10.1016/j.neuron.2015.09.017
https://doi.org/10.1016/j.neuron.2015.09.017
https://doi.org/10.1016/j.neuroimage.2017.10.020
https://doi.org/10.1523/JNEUROSCI.2559-19.2020
https://doi.org/10.1523/JNEUROSCI.2559-19.2020
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1016/j.neuroimage.2007.03.071
https://doi.org/10.1523/JNEUROSCI.1662-10.2010
https://doi.org/10.1523/JNEUROSCI.1662-10.2010
https://doi.org/10.1016/j.neuroimage.2009.11.001
https://doi.org/10.1016/j.neuroimage.2009.11.001
https://doi.org/10.3389/fnhum.2011.00142
https://doi.org/10.3389/fnhum.2011.00142
https://doi.org/10.1523/JNEUROSCI.0536-12.2012
https://doi.org/10.1523/JNEUROSCI.0536-12.2012
https://doi.org/10.3758/s13415-012-0125-7
https://doi.org/10.3758/s13415-012-0125-7
https://doi.org/10.1038/nn.3470
https://doi.org/10.1038/nn.4406
https://doi.org/10.1016/j.neubiorev.2017.02.009
https://doi.org/10.1016/j.neubiorev.2017.02.009
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/S0896-6273(00)80593-0
https://doi.org/10.1016/S0896-6273(00)80593-0
https://doi.org/10.1016/j.neuroimage.2016.01.026
https://doi.org/10.1016/j.neuroimage.2016.01.026
https://doi.org/10.7554/eLife.06481
https://doi.org/10.1523/JNEUROSCI.4590-15.2016
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1146/annurev.ne.18.030195.001205
https://doi.org/10.1016/j.tics.2010.01.004
https://doi.org/10.1016/S0166-2236(00)01633-7
https://doi.org/10.1073/pnas.0903593106
https://doi.org/10.1126/science.1164318
https://doi.org/10.1093/cercor/bhu302
https://doi.org/10.3389/fnhum.2017.00084
https://doi.org/10.3389/fnhum.2017.00084

Global Connectivity Fingerprints Predict the Domain Generality of Multiple-Demand Regions Schultzetal. | 15

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Ander-
sson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, et al. 2013. The

preprocessing  pipelines  for the  human
connectome project. Neurolmage. 80:105-124. https://doi.org/
10.1016/j.neuroimage.2013.04.127.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J,
Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M,
et al. 2016. A multi-modal parcellation of human cerebral
cortex. Nature. 536(7615):171-178. https://doi.org/10.1038/natu
re18933.

Haynes J-D, Rees G. 2005. Predicting the orientation of invisible stim-
uli from activity in human primary visual cortex. Nat Neurosci.
8(5):686-691. https://doi.org/10.1038/nn1445.

Haynes J-D, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. 2007.
Reading hidden intentions in the human brain. Curr Biol. 17(4):
323-328. https://doi.org/10.1016/j.cub.2006.11.072.

Hearne L], Mill RD, Keane BP, Repovs G, Anticevic A, Cole MW. 2021.
Activity flow underlying abnormalities in brain activations and
cognition in schizophrenia. Sci Adv. 7(29):eabf2513. https://doi.o
rg/10.1126/sciadv.abf2513.

Ito T, Kulkarni KR, Schultz DH, Mill RD, Chen RH, Solomyak LI,
Cole MW. 2017. Cognitive task information is transferred between
brain regions via resting-state network topology. Nat Commun.
8(1). https://doi.org/10.1038/s41467-017-01000- w.

Ji JL, Spronk M, Kulkarni K, Repovs G, Anticevic A, Cole MW.
2019. Mapping the human brain’s cortical-subcortical func-
tional network organization. Neurolmage. 185:35-57. https://doi.o
rg/10.1016/j.neuroimage.2018.10.006.

Kamitani Y, Tong F. 2005. Decoding the visual and subjective con-
tents of the human brain. Nat Neurosci. 8(5):679-685. https://doi.o
rg/10.1038/nn1444.

Liefooghe B, De Houwer ], Wenke D. 2013. Instruction-based response
activation depends on task preparation. Psychon Bull Rev. 20(3):
481-487. https://doi.org/10.3758/s13423-013-0374-7.

Meng X-L, Rosenthal R. 1992. Comparing correlated correlation coef-
ficients. Psychol Bull. 111(1):172-175.

Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex
function. Annu Rev Neurosci. 24(1):167-202.

Mur M, Bandettini PA, Kriegeskorte N. 2009. Revealing represen-
tational content with pattern-information fMRI—an introduc-
tory guide. Soc Cogn Affect Neurosci. 4(1):101-109. https://doi.o
1g/10.1093/scan/nsn044.

Nee DE, D’Esposito M. 2016. The hierarchical organization of the
lateral prefrontal cortex. Elife. 5:e12112.

Neta M, Schlaggar BL, Petersen SE. 2014. Separable responses to error,
ambiguity, and reaction time in cingulo-opercular task control
regions. NeuroImage. 99:59-68. https://doi.org/10.1016/j.neuroima
ge.2014.05.053.

Nichols TE, Holmes AP. 2002. Nonparametric permutation tests for
functional neuroimaging: a primer with examples. Hum Brain
Mapp. 15(1):1-25. https://doi.org/10.1002/hbm.1058.

Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter
CS. 2012. Meta-analytic evidence for a superordinate cogni-
tive control network subserving diverse executive functions.
Cogn Affect Behav Neurosci. 12(2):241-268. https://doi.org/10.3758/
§13415-011-0083-5.

Parkes LM, Marsman JBC, Oxley DC, GoulermasJY, Wuerger SM. 2009.
Multivoxel fMRI analysis of color tuning in human primary visual
cortex. J Vis. 9(1):1-1. https://doi.org/10.1167/9.1.1.

Pereg M, Meiran N. 2019. Rapid instructed task learning (but not auto-
matic effects of instructions) is influenced by working memory
load. PLoS One. 14(6):€0217681. https://doi.org/10.1371/journal.po
ne.0217681.

minimal

Pischedda D, Gorgen K, Haynes J-D, Reverberi C. 2017. Neu-
ral representations of hierarchical rule sets: the human con-
trol system represents rules irrespective of the hierarchical
level to which they belong. ] Neurosci. 37(50):12281-12296.
https://doi.org/10.1523/J]NEUROSCI.3088-16.2017.

Power JD, Petersen SE. 2013. Control-related systems in the human
brain. Curr Opin Neurobiol. 23(2):223-228. https://doi.org/10.1016/
j.conb.2012.12.009.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel
AC, Laumann TO, Miezin FM, Schlaggar BL, et al. 2011. Functional
network organization of the human brain. Neuron. 72(4):665-678.
https://doi.org/10.1016/j.neuron.2011.09.006.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spu-
rious but systematic correlations in functional connectivity MRI
networks arise from subject motion. NeuroImage. 59(3):2142-2154.
https://doi.org/10.1016/j.neuroimage.2011.10.018.

Reverberi C, Gorgen K, Haynes J-D. 2012a. Compositionality of rule
representations in human prefrontal cortex. Cereb Cortex. 22(6):
1237-1246. https://doi.org/10.1093/cercor/bhr200.

Reverberi C, Gorgen K, Haynes J-D. 2012b. Distributed representa-
tions of rule identity and rule order in human frontal cortex and
striatum. ] Neurosci. 32(48):17420-17430. https://doi.org/10.1523/
JNEUROSCI.2344-12.2012.

Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, Fusi
S. 2013. The importance of mixed selectivity in complex cogni-
tive tasks. Nature. 497(7451):585-590. https://doi.org/10.1038/na
ture12160.

Ruge H, Schifer TA, Zwosta K, Mohr H, Wolfensteller U. 2019. Neural
representation of newly instructed rule identities during early
implementation trials. Elife. 8:e48293. https://doi.org/10.7554/eLi
fe.48293.

Sadaghiani S, D’Esposito M. 2015. Functional characterization of the
cingulo-opercular network in the maintenance of tonic alert-
ness. Cereb Cortex. 25(9):2763-2773. https://doi.org/10.1093/cerco
r/bhu072.

Schneider W. 2003. Controlled & automatic processing: behav-
ior, theory, and biological mechanisms. Cogn Sci. 27(3):525-559.
https://doi.org/10.1016/50364-0213(03)00011-9.

Schultz DH, Ito T, Solomyak LI, Chen RH, Mill RD, Anticevic A,
Cole MW. 2018. Global connectivity of the frontoparietal cogni-
tive control network is related to depression symptoms in the
general population. Network Neurosci. 3(1):107-123. https://doi.o
1g/10.1162/NETN_a_00056.

Siegel JS, Mitra A, Laumann TO, Seitzman BA, Raichle M, Corbetta M,
Snyder AZ. 2017. Data quality influences observed links between
functional connectivity and behavior. Cereb Cortex. 27(9):4492—
4502. https://doi.org/10.1093/cercor/bhw253.

Sormaz M, Murphy C, Wang H, Hymers M, Karapanagiotidis T, Poerio
G, Margulies DS, Jefferies E, Smallwood J. 2018. Default mode
network can support the level of detail in experience during
active task states. Proc Natl Acad Sci. 115(37):9318-9323. https://
doi.org/10.1073/pnas.1721259115.

Staeren N, Renvall H, De Martino F, Goebel R, Formisano E. 2009.
Sound categories are represented as distributed patterns in the
human auditory cortex. Curr Biol. 19(6):498-502. https://doi.o
rg/10.1016/j.cub.2009.01.066.

Wallis JD, Miller EK. 2003. Neuronal activity in primate dorso-
lateral and orbital prefrontal cortex during performance of a
reward preference task. Eur ] Neurosci. 18(7):2069-2081. https://
doi.org/10.1046/j.1460-9568.2003.02922 .

Warden MR, Miller EK. 2010. Task-dependent changes in short-term
memory in the prefrontal cortex. ] Neurosci. 30(47):15801-15810.
https://doi.org/10.1523/JNEUROSCI.1569-10.2010.

Z20z fienuer Gz uo Jesn selieiqi] Alistaniun s1ebiny Aq $0S1 1 S9/S61IBYA/I00180/€60 "0 L /I0p/3]01LIB-00UBAPER/I00180/W02 dNO"dIWapeI.//:sdly WOl PaPEOjUMO(]


https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nn1445
https://doi.org/10.1016/j.cub.2006.11.072
https://doi.org/10.1126/sciadv.abf2513
https://doi.org/10.1126/sciadv.abf2513
https://doi.org/10.1038/s41467-017-01000-w
https://doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1038/nn1444
https://doi.org/10.1038/nn1444
https://doi.org/10.3758/s13423-013-0374-7
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1016/j.neuroimage.2014.05.053
https://doi.org/10.1016/j.neuroimage.2014.05.053
https://doi.org/10.1002/hbm.1058
https://doi.org/10.3758/s13415-011-0083-5
https://doi.org/10.3758/s13415-011-0083-5
https://doi.org/10.1167/9.1.1
https://doi.org/10.1371/journal.pone.0217681
https://doi.org/10.1371/journal.pone.0217681
https://doi.org/10.1523/JNEUROSCI.3088-16.2017
https://doi.org/10.1016/j.conb.2012.12.009
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1093/cercor/bhr200
https://doi.org/10.1523/JNEUROSCI.2344-12.2012
https://doi.org/10.1523/JNEUROSCI.2344-12.2012
https://doi.org/10.1038/nature12160
https://doi.org/10.1038/nature12160
https://doi.org/10.7554/eLife.48293
https://doi.org/10.7554/eLife.48293
https://doi.org/10.1093/cercor/bhu072
https://doi.org/10.1093/cercor/bhu072
https://doi.org/10.1016/S0364-0213(03)00011-9
https://doi.org/10.1162/NETN_a_00056
https://doi.org/10.1162/NETN_a_00056
https://doi.org/10.1093/cercor/bhw253
https://doi.org/10.1073/pnas.1721259115
https://doi.org/10.1073/pnas.1721259115
https://doi.org/10.1016/j.cub.2009.01.066
https://doi.org/10.1016/j.cub.2009.01.066
https://doi.org/10.1046/j.1460-9568.2003.02922.x
https://doi.org/10.1046/j.1460-9568.2003.02922.x
https://doi.org/10.1523/JNEUROSCI.1569-10.2010

16 | Cerebral Cortex, 2022, Vol. 00, No. 00

White IM, Wise SP. 1999. Rule-dependent neuronal activity in the
prefrontal cortex. Exp Brain Res. 126(3):315-335. https://doi.o
rg/10.1007/5002210050740.

Woolgar A, Thompson R, Bor D, Duncan J. 2011. Multi-voxel
coding of stimuli, rules, and responses in human fron-
toparietal cortex. Neurolmage. 56(2):744-752. https://doi.org/
10.1016/j.neuroimage.2010.04.035.

Yeo BTT, Krienen FM, Sepulcre ], Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR,
et al. 2011. The organization of the human cerebral cortex

estimated by intrinsic functional connectivity. J Neurophysiol.
106(3):1125-1165. https://doi.org/10.1152/jn.00338.2011.

Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner
RL, Asplund CL, Chee MWL. 2015. Functional specialization and
flexibility in human association cortex. Cereb Cortex. 25(10):
3654-3672. https://doi.org/10.1093/cercor/bhu217.

Zhang F, Wang J-P, Kim J, Parrish T, Wong PCM. 2015. Decoding mul-
tiple sound categories in the human temporal cortex using high
resolution fMRI. PLoS One. 10(2):e0117303. https://doi.org/10.1371/
journal.pone.0117303.

Z20z fienuer Gz uo Jesn selieiqi] Alistaniun s1ebiny Aq $0S1 1 S9/S61IBYA/I00180/€60 "0 L /I0p/3]01LIB-00UBAPER/I00180/W02 dNO"dIWapeI.//:sdly WOl PaPEOjUMO(]


https://doi.org/10.1007/s002210050740
https://doi.org/10.1007/s002210050740
https://doi.org/10.1016/j.neuroimage.2010.04.035
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1093/cercor/bhu217
https://doi.org/10.1371/journal.pone.0117303
https://doi.org/10.1371/journal.pone.0117303

	 Global Connectivity Fingerprints Predict the Domain Generality of Multiple-Demand Regions
	Introduction
	Methods
	Results
	Discussion
	Funding


